Ce cours d'économétrie aborde les concepts de base de cette matière détaillé dans le plan ci-dessous. Chaque chapitre théorique sera accompagné d'application empirique qui permettront à l'étudiant d'apprendre les bases de Python.
L'évaluation du cours se fera à travers des devoirs à rendre en ligne (après chaque chapitre) et d'un projets de recherche à rendre en fin de semestre.
À la fin du cours, les étudiants devraient être capables de :
- Comprendre et appliquer les concepts fondamentaux de l'économétrie.
- Développer et estimer des modèles économétriques appropriés pour analyser des phénomènes socio-économiques.
- Utiliser Python pour effectuer des analyses économétriques.
- Interpréter les résultats des analyses économétriques et formuler des recommandations basées sur les résultats.
Lectures recommandées : W. Green "Econométrie" ou Wooldridge "Introduction à l'Econométrie" ou Crépon et Jacquemet "Econométrie: méthodes et applications".
Chapitre 1 : MCO
Régression linéaire simple et multiple, Moindres carrés ordinaires (MCO), hypothèses.
Chapitre 2 : Multicolinéarité et Hétéroscédasticité
Étude des problèmes de multicolinéarité et d'hétéroscédasticité ainsi que des méthodes pour les détecter et les corriger.
Chapitre 3: Séries temporelles: traitement de l'autocorrélation
Exploration des problèmes d'autocorrélation et des solutions possibles.
Chapitre 4 : Économétrie de panel
Modèles à effets fixes
Chapitre 5: Problèmes d'endogénéités et solutions
- Enseignant: Fabien Candau