Numerical resources for HPC course

  • Jean-Matthieu Etancelin, LMAP, IPRA
  • Matthieu Haefele, LMAP, CNRS, IPRA


Syllabus:

  • Chapter1 : Introduction : Context, history of computing, Parallel computing and hardware architecture
  • Chapter2 : Profiling and serial optimisation in Python
  • Chapter3 : Message Passing Interface (MPI) for distributed memory parallel computing
  • Chapter4 : Python packages for shared memory parallel computing (Numba and/or Pythran)


Evaluation

  • Lab on Chapter 1 and 2, 3h on November 5
  • Lab on Chapter 3, 3h on January 14
  • Mini-project: code, 3 pages report + 10 min individual interview, February 19
  • Final grade : average of 3 exams


Practical details

  •  Python3 programming
  • 36 hours for course and practical sessions
  • Remote access for homework and projects


Expected skills

  • Implement a parallel algorithm
  • Execute a parallel program on a supercomputer
  • Perform a profiling of a parallel application
  • Analyse the parallel performances of a program


Additional resources:

Matplotlib configuration file on bilbo cluster: 

mkdir -p ~/.config/matplotlib && cp /home/user/j/jmetancelin/Public/matplotlibrc ~/.config/matplotlib/matplotlibrc