On analyse des méthodes numériques pour la résolution des systèmes linéaires. Ces méthodes soulèvent des problèmes théoriques nécessitant une connaissance solide de l’algèbre matricielle
Rappels et compléments d'algèbre linéaire : Matrices hermitiennes, théorème de Schur, orthonormalisation de Gram-Schmidt. Norme matricielle, norme matricielle subordonnée, conditionnement (cas d’une matrice symétrique réelle, cas d’une matrice inversible, inégalités, exemple de système mal conditionné, pré-conditionneurs), rayon spectral propriétés sur les normes subordonnées et le rayon spectral
Systèmes sur-déterminés : équation normale, méthode de factorisation QR, algorithme de Householder
Méthodes itératives pour la résolution de systèmes linéaires: principe, méthode de Jacobi, méthode de Gauss-Seidel, méthode de relaxation, résultats de convergence, comparaison de ces méthodes sur des matrices tri-diagonales
Méthodes variationnelles : méthode du gradient à pas fixe, interprétation graphique, méthode du gradient à pas optimal, espaces de Krylov, méthode du gradient conjugué
Résolution numérique de u’’ = f par une méthode de différences finies : discrétisation et système linéaire résultant de la discrétisation, théorème de Lax.
- Profesor: Sébastien Tordeux