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The Faster Growth of Larger, Less Crowded Locations
By Jordan Rappaport 

Over the past few decades, the population and employment growth 
of small and large locations in the United States have diverged. Many 
smaller cities and rural areas saw declining population and employment 
from 2000 to 2017 as residents and jobs migrated to larger, more prosper-
ous locations. This migration might suggest that the benefits of size, such 
as business productivity and urban amenities, have become greater over 
time. However, the migration might also reflect other factors, such as the 
disproportionate specialization of smaller locations in the declining manu-
facturing and agriculture sectors.

Jordan Rappaport documents the faster population and employment 
growth of medium and large metropolitan areas compared with smaller 
locations and finds growth is strongly positively correlated with popula-
tion. Moreover, he finds that most of this correlation is driven by size itself 
rather than other characteristics. However, he also finds that this relation-
ship breaks down for the largest metro areas. His results suggest that both 
the benefits and costs of size have increased over the past few decades. 

Machine Learning Approaches to Macroeconomic Forecasting
By Aaron Smalter Hall

Forecasting macroeconomic conditions can be challenging, requiring 
forecasters to make many discretionary choices about the data and meth-
ods they use. Although forecasters underpin the choices they make about 
models and complexity with economic intuition and judgement, these 
assumptions can be flawed. Machine learning approaches, on the other 
hand, automate as many of those choices as possible in a manner that is 
not subject to the discretion of the forecaster.

Aaron Smalter Hall applies machine learning techniques to find an 
optimal forecasting model for the unemployment rate. His results suggest 
that when supplied with diverse and complex data, a machine learning 
model can outperform simpler time-series models as well as a consensus 
of professional forecasters, with better performance at shorter horizons. 
In particular, his results show that a machine learning model can identify 
turning points in the unemployment rate earlier than competing methods.



The Response of U.S. Investment to Oil Price Shocks:  
Does the Shale Boom Matter?
By Nida Çakır Melek

After an unprecedented decline from 2014 to 2016, the real price of oil 
more than doubled, renewing interest in the effects of oil price fluctuations 
on the U.S. economy. The oil sector has become increasingly important to 
the U.S. economy over the past decade, and total U.S. business fixed invest-
ment appears to have followed oil investment’s pattern in recent years. This 
positive correlation between oil prices and U.S. investment growth may be 
related to the surge in U.S. oil production known as the shale boom.

Nida Çakır Melek explores the effect of unexpected oil price changes 
(or “shocks”) on U.S. investment and examines whether this effect changed 
after the shale boom. She finds that U.S. investment has become more re-
sponsive to demand shocks and less responsive to oil supply shocks since 
the shale boom. In addition, she finds that oil investment has become 
more responsive to oil supply and demand shocks since the boom. Her 
results suggest that the shale boom led to greater spillovers from the oil 
sector to the aggregate economy.





Over the past few decades, the population and employment of 
small and large locations in the United States have been diverg-
ing. Most of the smallest locations in the United States—the 

approximate 1,200 counties and micropolitan areas with a population 
below 25,000—saw declining population and employment from 2000 
to 2017 as their residents and jobs migrated to larger, more prosperous 
locations. Conversely, almost all medium and large metropolitan areas 
in the United States—those with a population of 500,000 or more—
saw increasing population and employment from 2000 to 2017, many 
at well above the national rate.

An important question is whether this divergence between small 
and large locations has been driven by size itself. One possibility is that 
the benefits of size have become greater over time. For example, busi-
nesses may increasingly benefit from being near suppliers. Likewise, 
households may increasingly value access to services and amenities that 
are only available in larger locations. Alternatively, the divergence may 
be driven by characteristics that are correlated with size but not inher-
ent to it. For example, the slower growth of smaller locations may sim-
ply reflect their disproportionate specialization in the manufacturing 
and agriculture sectors, which have seen declining employment.

In this article, I document the faster population and employment 
growth of medium and large metropolitan areas compared with smaller 
locations. Among these smaller locations—rural counties, micropolitan 
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areas, and small metropolitan areas—growth is strongly positively corre-
lated with population. Statistical analysis shows that most of this positive 
correlation is likely driven by size itself rather than location characteris-
tics correlated with size. Among the medium and large metropolitan ar-
eas, growth is only weakly correlated with population but strongly nega-
tively correlated with population density, a measure of crowdedness that 
moves closely with population. This negative correlation with density, 
too, is likely driven by density itself rather than correlated characteristics. 
Together, growth’s positive correlation with population and negative cor-
relation with density suggest that both the benefits and costs of size have 
increased over the past few decades.

Section I documents the relationship between population growth 
and size: population growth is positively correlated with size up to a 
population of about 500,000, uncorrelated with increases in size from 
500,000 to 3 million, and negatively correlated with increases in size 
above 3 million. Section II lays out a framework for interpreting these 
correlations between growth and size: differences in locations’ popula-
tion and employment growth typically reflect relative changes in lo-
cations’ productivity and amenities. Section III documents that the 
positive correlation of growth and size holds even after controlling for 
differences in local characteristics.

I.	 The Positive Relationship between Population and 
Employment Growth and Size 

To analyze the relationship between growth and size, I look at all 
locations within the continental United States. Specifically, I combine 
the 358 metropolitan and 554 micropolitan areas delineated after the 
2000 decennial census with the 1,346 remaining counties that are not 
part of a metropolitan or micropolitan area. The metropolitan areas, 
which range in population from 52,000 to 18 million, are combina-
tions of counties surrounding a dense core of at least 50,000 residents. 
Most are made up of two or more counties. For descriptive purposes, I 
divide the metropolitan areas into three groups: small (population up to 
500,000), medium (population from 500,000 to 3 million), and large 
(population above 3 million). The micropolitan areas, which range in 
population from 13,000 to 182,000, are combinations of counties sur-
rounding a dense core of 10,000 to 50,000 residents. Most are made 
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up of a single county. The remaining counties (henceforth, “non-core”) 
range in population from 67 to 97,000. I measure growth rates us-
ing a constant delineation of metropolitan and micropolitan land areas. 
Thus, any changes in metropolitan and micropolitan area populations 
attributable to changes in their land area are excluded from measured 
growth rates.1

Chart 1 shows a scatter plot of the average annual growth rate of 
locations’ population from 2000 to 2017 against the natural log of their 
population in 2000. I take the natural log of population to allow the 
horizontal axis to measure proportional rather than additive changes in 
population: each log point increase moving rightward along the hori-
zontal axis represents a multiplicative increase in population by a factor 
of 2.7.2

The chart shows a clear, positive relationship between locations’ 
population growth from 2000 to 2017 and their level of population 
in 2000. The blue line shows a smoothed average of this relationship, 
which can be interpreted as the predicted rate of growth based on ini-
tial size.3 Predicted population growth ranges from modestly negative 
for locations with a low population in 2000 to moderately positive for 
most metropolitan areas. For example, a location with a population 
of 1,500 in 2000 (log population of 7.3) has a predicted population 
growth rate of −0.6 percent per year, leading to a 10 percent cumulative 
loss in population from 2000 to 2017. In contrast, a location with a 
population of 500,000 (log population of 13.1) has a predicted growth 
rate of just under 1 percent per year, leading to a 17 percent cumula-
tive gain in population from 2000 to 2017. The predicted population 
growth rate is highest, 1.1 percent per year, for locations with a popula-
tion close to 3 million (log population of 14.9). 

Locations’ predicted population growth falls off as their population 
in 2000 exceeds 3 million. Los Angeles and New York City, the two 
largest metropolitan areas with respective populations of 12.4 million 
and 18.3 million and log populations of 16.3 and 16.7, have predict-
ed growth rates of 0.5 percent and 0.2 percent per year, meaningfully 
lower than the maximum 1.1 percent rate. But the decline from the 
maximum rate is slight for most large metropolitan areas. For exam-
ple, Philadelphia, the fourth-largest metropolitan area in 2000 (with a 
population of 5.7 million and log population of 15.6) has a predicted 
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Chart 1
Population Growth versus Initial Population, 2000–17

Notes: The blue line represents a prediction of locations’ growth rates based on their population. The dashed orange 
line corresponds to a growth rate of zero. Replication code is available in an online data supplement.
Sources: U.S. Census Bureau and author’s calculations.
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growth rate of 1.0 percent per year, only a tick below the maximum 
predicted rate. 

Overall, locations with population above 500,000 on average have 
considerably higher predicted growth than medium-sized locations, 
which in turn have considerably higher predicted growth than small 
locations. Of course, the actual growth rates of many locations differed 
considerably from the predicted rate based on their size. The large ver-
tical dispersion of the scatter above and below the average line reflects 
that characteristics other than initial size drove most of the variation in 
growth rates from 2000 to 2017. 

Correspondingly, small size did not preclude rapid growth. Chart 
2 zooms in on the left-hand side of Chart 1, showing the same scatter 
and average relationship for locations with a population in 2000 below 
100,000 (log population of 11.5). Many of the locations that grew 
fastest relative to their predicted rates—that is, those furthest above 
the predicted growth line—are distinguished by natural amenities such 
as mountains (for example, Custer County, CO; Rich County, UT; 
Wasatch County, UT; St. George, UT; Valley County, ID; Jackson, 
WY; Bozeman, MT; and Lyon County, NV) or warm winter weather 
(for example, Palm Coast, FL; The Villages, FL; and Walton County, 
FL).4 Others are adjacent to metropolitan areas (for example, Hudspeth 
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Chart 2
Growth versus Initial Population, Smaller Locations

Notes: Metropolitan and micropolitan areas are labeled with the name of their largest city. The R2 value is for all loca-
tions with a population below 100,000. The blue line represents a prediction of locations’ growth rates based on their 
population and estimated using all 2,258 locations. The dashed orange line corresponds to a growth rate of 0. Marker 
for Issaquana County, MS (log population 7.7, growth rate –3.0 percent) is below the displayed area. Replication 
code is available in an online data supplement.
Sources: U.S. Census Bureau and author’s calculations.
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County, TX; Culpeper County, VA; and Lancaster, SC) or benefitted 
from oil and natural gas deposits that became accessible with the devel-
opment of hydraulic fracturing technology (Williston, ND; Mountrail 
County, ND; McKenzie County, ND; Sublette County, WY; Garza 
County, TX; and Gaines County, TX). 

Similarly, large size did not preclude population decline. Chart 3 
zooms in on the right-hand side of Chart 1, showing the same scatter 
plot and average relationship for medium and large metropolitan areas, 
those with a population in 2000 of at least 500,000. In nine of these 
metros, population actually declined. Among these, eight are distin-
guished by an industrial composition skewed heavily toward manufac-
turing, a sector in which employment has been contracting for many 
decades. The disadvantages of this inherited industrial composition are 
likely to have offset any benefits from size. 

Overall, however, declining population was relatively rare for me-
dium and large metropolitan areas as well as for smaller metropoli-
tan areas with a population in 2000 between 200,000 and 500,000 
(Chart 4). In contrast, the majority of locations with a population  
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Chart 3
Growth versus Initial Population, Medium and  
Large Metropolitan Areas

Notes: Metropolitan areas are labeled with the name of their largest city. The R2 value is for metropolitan areas with a 
population of at least 500,000. The blue line represents a prediction of locations’ growth rates based on their popula-
tion and estimated using all 2,258 locations. The orange dashed line corresponds to a growth rate of 0. The Denver 
and Boulder metropolitan areas are combined. Replication code is available in an online data supplement.
Sources: U.S. Census Bureau and author’s calculations.

–1.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0
ln(population in 2000)

5.5 mil

Austin

14.7 mil

Nashville

Toledo

2.0 mil729 ths442 ths 1.2 mil 3.3 mil 8.9 mil

Tampa

Raleigh

San Antonio

Charlotte Orlando

Riverside

Phoenix

Boston
Chicago

Houston

Washington

Philadelphia

Miami

Dallas
Atlanta

Pittsburgh Detroit
New Orleans

Buffalo

Youngstown

Los  Angeles
NYC

Cleveland

Kansas City

Denver

Providence St. Louis
Dayton

McAllen

Seattle
Sacramento

Cincinnati
San Jose

OKCOmaha

Tulsa

Scranton

Population growth, 2000–17 (average annual percent)

LasVegas

Charleston (SC)

San Francisco

Portland (OR)

below 25,000 contracted, as did more than 40 percent of locations 
with a population between 25,000 and 50,000. Across all locations, 
population accounts for almost a quarter of the variation in growth 
rates from 2000 to 2017 (as estimated by the R2 statistic). This is a high 
share attributable to a single characteristic.

The relationship between population growth and size from 2000 
to 2017 continued a pattern that began in the mid-twentieth century. 
Chart 5 shows the predicted population growth rates from 1960 to 
1980 (blue line) and from 1980 to 2000 (green line) based on the cor-
responding initial population levels. Both predicted relationships are 
characterized by a positive correlation between growth and size across 
most locations and a negative relationship across the largest locations.5 

However, the relationship between growth and size evolved over 
these periods in four important ways. First, predicted growth shifted 
lower over time for locations with an initial population up to about 1 
million, primarily reflecting slowing national population growth. As a 
result, the share of small locations with predicted population decline 
increased over time. Second, the downward slope in the relationship for 
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Chart 4
Share of Locations Losing Population

Note: Replication code is available in an online data supplement.
Sources: U.S. Census Bureau and author’s calculations.
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Historical Population Growth versus Initial Population

Sources: U.S. Census Bureau, Desmet and Rappaport (2017), and author’s calculations. 
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the largest locations began at successively higher population levels over 
time. From 1960 to 1980, predicted growth began sloping down at a 
population of about 500,000. From 1980 to 2000, predicted growth 
began sloping down at a population of about 1.3 million. In the most 
recent period, it began sloping down at about 3.0 million. Third, the 
magnitude of the downturn for the largest locations varied over time. 
Predicted growth declined more in the 2000–17 period than in the 
1980–2000 period but less than in the 1960–80 period. Fourth, the 
relationship between growth and size was strongest during the most 
recent period. Initial size accounted for 24 percent of the variation in 
growth from 2000 to 2017 compared with a maximum of 5 percent 
in the earlier periods. This increase in explanatory power may reflect 
size becoming a more important determinant of growth or other deter-
minants of growth, such as suburbanization and the migration to the 
Sunbelt, becoming less important. 

Growth’s relationship with employment is similar to its relation-
ship with population. Chart 6 shows a scatter of locations’ employment 
growth from 2000 to 2014 plotted against their initial level of employ-
ment in 2000. The black line represents predicted growth.6 The em-
ployment levels along the horizontal axis are lower than the population 
levels discussed previously, reflecting that the number of individuals 
with jobs, including both full time and part time, is less than one-half 
of the population in most locations. Employment growth from 2000 to 
2014 was positively correlated with employment in 2000 up to a level 
of about 500,000 employed individuals (log employment of 13.1) and 
approximately uncorrelated with further increases in employment. Pre-
dicted average annual employment growth rose from about −0.8 per-
cent for locations with fewer than 500 employed individuals in 2000 
(log employment below 6.2) to about 1.0 percent for locations with 
more than 500,000 employed individuals. 

The similar relationships between size and growth of both popula-
tion and employment reflect that employment and population growth 
are strongly positively correlated over the long term. In particular, 
increases in employment tend to be matched approximately one for 
one by inflows of workers (Rappaport 2012). I focus my subsequent  
analysis on population rather than employment, as it is the better  
measured of the two. 
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II.	 Interpreting Correlations with Growth

Local population and employment growth are not inherently desir-
able or undesirable outcomes. Rather, they reflect changes in the un-
derlying fundamentals determining where households and businesses 
choose to locate. In this section, I introduce a local growth framework 
that illustrates how these fundamentals are linked to population and 
employment. I then suggest some shifts in fundamentals that might be 
driving the observed relationship between growth and size. 

A framework for understanding local population and employment growth

The local growth framework has three key features. First, locations 
have different fundamental characteristics that affect the productivity of 
businesses or that serve as amenities for residents.7 Some of these char-
acteristics are exogenous in the sense that they do not depend on lo-
cal outcomes such as income and population—for example, natural re-
sources, a natural ocean harbor, natural recreational opportunities, and 
nice weather. Other characteristics are endogenous in the sense that they 
are themselves a local outcome—such as population, employment, and 
income—or partly depend on a local outcome. For example, a larger 
population may contribute to disamenities such as traffic congestion and 

Chart 6
Employment Growth versus Initial Employment, 2000–14

Notes: The orange dashed line corresponds to a growth rate of 0. Several locations have employment growth rates 
outside the displayed range. Replication code is available in an online data supplement.
Sources: U.S. Census Bureau and author’s calculations.
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pollution. Likewise, the age and income distribution of local residents 
may affect the variety of available goods and services (Glaeser, Kolko, and 
Saiz 2001; Diamond 2016).8 

Second, an economy is in a spatial equilibrium if all households 
and firms prefer to remain where they are rather than move elsewhere 
(Rosen 1979; Roback 1982). In this equilibrium, businesses cannot in-
crease their profits by moving somewhere else because higher productiv-
ity in other locations is offset by higher wages, land prices, and other 
costs. Similarly, households cannot benefit from moving somewhere 
with higher wages or more amenities because these advantages are offset 
by higher housing prices, more traffic congestion, and other costs. As 
is intuitive, locations with characteristics that contribute to high pro-
ductivity or amenities have a larger equilibrium population (Rappaport 
2008a, 2008b, 2016). The larger population pushes up land prices, 
housing prices, traffic congestion, and other costs to the level at which 
businesses and households are equally willing to live in locations with 
lower productivity and amenities but also lower costs.

Third, a location’s transition from its current level of population 
to its equilibrium level, driven by net flows of households and busi-
nesses, takes considerable time (Rappaport 2004; Desmet and Rappa-
port 2017). Locations with a current population significantly below its 
equilibrium level will typically grow at an above-average rate for sev-
eral decades as people gradually migrate there. Locations with an initial 
population significantly above its equilibrium level will typically grow 
at a below-average rate for several decades as people gradually migrate 
elsewhere. These transitions are gradual for several reasons, including 
physical moving costs, households’ ties to family and friends in origin 
locations, the time it takes for housing and infrastructure to deteriorate 
in origin locations, and the time it takes to build new housing and infra-
structure in destination locations (Glaeser and Gyuorko 2005; Kennan 
and Walker 2011; Davis and others 2013).

Although the local growth framework emphasizes location size as 
a consequence of productivity and amenities, size is also an important 
determinant of location productivity and amenities. For example, large 
size contributes negatively to productivity and amenities by increasing 
numerous types of congestion.9 But large size also contributes positively 
to productivity and amenities in numerous ways. Such agglomerative 
benefits typically take the form of more sharing, better matching, and 



ECONOMIC REVIEW • FOURTH QUARTER 2018	 15

increased learning. (Duranton and Puga 2004). Agglomerative sharing 
captures large locations’ ability to spread large fixed costs, such as build-
ing an airport or sports stadium, across a broad base of customers. It also 
captures large locations’ ability to support a wider variety of business and 
consumer services, especially those that are more specialized. Agglomera-
tive matching is exemplified by a larger pool of job candidates and firms 
that allows for a better fit of workers’ skills to firms’ needs. For example, 
research shows that a larger pool of employers has become more impor-
tant over time as the share of couples with dual careers has risen (Costa 
and Kahn 2000). Agglomerative learning concerns the generation and 
diffusion of knowledge. For example, researchers tend to discover more, 
as measured by patents, when working near each other (Carlino and Kerr 
2015; Buzard and others 2017). Likewise, when many workers in the 
same occupation are concentrated in one location, they learn from each 
other. As Alfred Marshall observed in 1890, “the mysteries of the trade 
become no mysteries; but are as it were in the air.” Estimates based on 
wages suggest that these agglomeration effects together increase a loca-
tion’s productivity by between 2 and 6 percent for each log point increase 
in population. (Combes and Gobillon 2015). No comparable estimates 
exist for the effect of size on amenities. 

An important implication of the local growth framework is that dif-
ferences in growth rates typically reflect changes in underlying productiv-
ity and changes in underlying amenities rather than levels. At any point 
in time, the distribution of population across locations already captures 
many of the differences in local productivity and amenities, which tend 
to persist over very long periods. Metaphorically, differences in locations’ 
current size result from how firms and people have “voted with their 
feet” up until that point in time (Tiebout 1956). Differences in growth 
rates, on the other hand, reflect firms and people changing their “votes.” 
Because transitions are extended, this vote changing can persist for up to 
several decades following a change in productivity or amenities.10

Interpreting the relationship between growth and size

The local growth framework suggests at least three possible inter-
pretations of the empirical relationships between the levels of popula-
tion and employment and their growth rates. One possible interpre-
tation is that the agglomerative benefits from increases in population 
up to a level of 500,000 have become larger during recent decades.11 
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Following such an increase in agglomerative benefits, the equilibrium 
size of locations with a previous equilibrium population above 500,000 
would have risen relative to the new equilibrium size of locations with a 
previous equilibrium population below 500,000.12

Under this first interpretation, the lack of correlation between growth 
and size across medium metropolitan areas suggests that the agglomera-
tive benefits from increases in population from 500,000 to 3 million 
have remained approximately the same during recent decades. The nega-
tive correlation between growth and size across large metropolitan areas 
suggests that the agglomerative benefits from increases in population 
above 3 million have become smaller during recent decades.13

A second possible interpretation is that the agglomerative costs 
from increases in population up to a level of 500,000 have become 
smaller during recent decades. The spatial equilibrium of locations’ size 
depends on the extent to which higher productivity and amenities are 
offset by higher housing prices, traffic congestion, and other agglomera-
tive costs as more people compete for housing, road space, and other 
goods and services.14 Thus, if agglomerative costs become less sensitive 
to population—for example, if cities relax zoning restrictions, expand 
public transit, or improve highway infrastructure—then larger loca-
tions will benefit proportionally more than smaller locations.15 In es-
sence, the lowered costs of size allow more households and businesses to 
crowd into locations with high productivity and amenities before rising 
house prices and congestion offset the gains from doing so.   

Under this second interpretation, the flat and declining portions 
of the relationship between growth and population suggest that the ag-
glomerative costs from increases in population from 500,000 to 3 mil-
lion have remained approximately the same, while the agglomerative 
costs from increases in population above 3 million have become larger.16

A third possible interpretation is that the contributions of a lo-
cation’s exogenous characteristics to productivity and amenities have 
changed during recent decades. Such changes would likely induce 
correlations between growth and size because the same characteris-
tics, through their previous contributions to productivity and ameni-
ties, helped determine the location’s previous equilibrium population. 
For example, households during the nineteenth century were likely to 
have preferred, all else equal, to live where winters were less cold and  
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summers were less hot and humid. As a result, locations with mild 
weather were likely to have, all else equal, a larger equilibrium popula-
tion than locations that did not. During the early twentieth century, this 
preference for mild weather began strengthening (Rappaport 2007). 
The resulting faster population growth of locations with mild weather 
induced a positive correlation between growth and size, reflecting that 
locations with mild weather tended to have above-average size. Howev-
er, the underlying impetus for this positive correlation was not intrinsi-
cally related to size. Similarly, the industry and occupation composition 
of many small locations is skewed toward agriculture and manufactur-
ing, sectors for which employment has been declining during recent  
decades. The slower growth of smaller locations may partly reflect this 
industrial shift rather than size. 

III.	 The Increased Benefits and Costs of Size

The local growth framework suggests three possible interpretations 
of the empirical correlations between growth and size. To assess which 
interpretation is most likely, I first run regressions of population growth 
on initial population and several additional location characteristics to 
rule out that such characteristics, rather than changes in agglomerative 
benefits and costs, are driving the correlations. I then run regressions 
of population growth on initial population density to help distinguish 
whether changes in agglomerative benefits or agglomerative costs are 
driving the correlations. 

The increased benefits of size for smaller locations

Table 1 reports results from regressing average annual population 
growth from 2000 to 2017 on initial population in 2000 and addition-
al characteristics such as geographic location and industry composition. 
I divide initial population into a “spline” of eight population ranges to 
allow the regression to approximate the smoothed relationship between 
predicted growth and population (the blue line in Chart 1). The regres-
sion coefficient on each of the population ranges estimates the slope of 
a linear segment corresponding to the curved line through that popula-
tion range. 

The results in column 1 show that regressing population growth on 
the spline without controlling for other characteristics approximately 
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Table 1
 Partial Correlation of Population Growth with Population

(1) (2) (3) (4)

Partial correlations of 2000–17  
population growth Own size only Baseline

Baseline and  
industry  

composition

Baseline, 
industry  

composition, 
and occupation  

composition

Controls:  

Metropolitan adjacency (2)  x x x

Weather (10) x x x

Coast and river adjacency (7)  x x x

Hilliness (2)  x x x

Shale basin (6) x x x

Higher education (1)  x x x

Industry composition (18)  x x

Occupation composition (21) x

ln(pop) from 5.9 to 8 (3,000)
128 locations

0.06 
(0.12)

0.16
(0.10)

0.36**
(0.15)

0.41*** 
(0.16)

ln(pop) from 8 to 9 (8,100)
319 locations

0.27**
(0.12)

0.35***
(0.07)

0.26***
(0.07)

0.28***
(0.07)

ln(pop) from 9 to 10 (22,000)
627 locations

0.30***
(0.08)

0.27***
(0.07)

0.18***
(0.07)

0.18***
(0.06)

ln(pop) from 10 to 11 (60,000)
620 locations

0.25***
(0.09)

0.19***
(0.06)

0.19***
(0.06)

0.20***
(0.05)

ln(pop) from 11 to 12 (163,000)
292 locations

0.46***
(0.08)

0.50***
(0.09)

0.39***
(0.09)

0.36***
(0.09)

ln(pop) from 12 to 13 (440,000)
126 locations

0.18
(0.13)

0.09
(0.10)

0.04
(0.09)

0.03 
(0.09)

ln(pop) from 13 to 14 (1.2 million)
60 locations

0.12
(0.20)

0.17
(0.15)

0.00
(0.11)

−0.06
(0.10)

ln(pop) from 14 to 16.7 (18.3 million)
41 locations

−0.09
(0.13)

−0.13
(0.12)

−0.16
(0.10)

−0.16
(0.10)

Observations 2,258  2,258  2,258  2.258

R2 0.24  0.43  0.52  0.54

Adjusted R2 0.23  0.42 0.50  0.52

Control variables  28 46  67

R2, control variables  0.30  0.48  0.51

 **	 Significant at the 5 percent level
***	 Significant at the 1 percent level

Notes: Dependent variable is average annual population growth (percent) from 2000 to 2017. Regressions also in-
clude a constant. The smallest location has a log population of 5.9 (population of 356). Standard errors are in paren-
theses and adjust for spatial correlation based on Conley (1999). Italicized text reports the number of locations with 
a population that lies within each spline segment. Coefficients on all variables included in the baseline regression are 
reported in appendix Table A-1. Replication code is available in an online data supplement. 
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matches the smoothed relationship between predicted growth and ini-
tial size. Each log point increase in population from 8 to 12 (corre-
sponding to a population increase from about 3,000 to 163,000) is 
associated with between 0.25 and 0.46 percentage point faster predict-
ed growth per year, implying large differences in cumulative growth. 
Three of the corresponding coefficients statistically differ from zero at 
the 1 percent level, and the fourth coefficient statistically differs from 
zero at the 5 percent level. Predicted growth also rises modestly as log 
population increases from 12 to 13 and from 13 to 14 and then falls 
modestly as log population rises above 14. But none of the coefficients 
on these segments statistically differs from zero. Overall, the initial  
population spline accounts for 24 percent of the variation in location 
growth rates, the same as the share accounted for by the smoothed re-
lationship shown in Chart 1. 

The statistically significant, positive relationship between growth 
and size for locations with log population from 8 to 12 continues to 
hold after accounting for numerous other characteristics, suggesting 
that the correlation is indeed driven by changes in agglomerative ben-
efits and costs rather than by changes in the contributions of exog-
enous characteristics to productivity and amenities. Column 2 of Table 
1 shows results from a regression that controls for 28 baseline character-
istics likely to affect productivity and amenities and thereby drive both 
growth and size. On their own, these baseline characteristics—which 
describe adjacency to metropolitan areas, adjacency to coasts and rivers, 
weather, hilliness, energy deposits, and the presence of universities and 
colleges—account for a considerable portion of the variation in growth 
rates (30 percent, reported in the bottom row) and an even larger por-
tion of the variation in the level of population in 2000 (40 percent, 
not shown).17 But they leave the coefficients on the population spline 
mostly unchanged, ruling out that any of the baseline characteristics is 
driving the correlation between growth and size. 

The positive correlation between growth and size similarly con-
tinues to hold after controlling for the industry and occupation com-
position of locations. Column 3 reports results from a regression that 
includes the baseline characteristics along with variables measuring the 
share of aggregate employment in each of 18 industries. Column 4 
reports results from a regression that includes the baseline and industry 
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characteristics along with variables measuring the share of aggregate 
employment in each of 21 occupations. In both regressions, the posi-
tive coefficients on the spline segments with log population between 8 
and 12 are mostly unchanged. Both regressions also estimate a large, 
statistically significant positive coefficient on the lowest spline segment 
(log population from 5.9 to 8; population from 350 to 3,000), sug-
gesting that even across the smallest locations, the net productivity and 
amenity benefits of size increased. In addition, including the industry 
and occupation controls boosts the magnitude of the negative coeffi-
cient on the uppermost spline segment and lowers its standard error. As 
a result, the coefficients on the uppermost segment in columns 3 and 
4 statistically differ from 0 at only slightly above the 10 percent level, 
suggesting that the net productivity and amenity benefits of size may 
have decreased for large metropolitan areas.18

The estimated coefficients in Table 1 imply that differences in popu-
lation among smaller locations predict large differences in growth rates 
from 2000 to 2017. To obtain the differences in growth rates between a 
location with log population in 2000 of 8 (a population of 3,000) and 
a location with log population of 12 (a population of 163,000), I sum 
the coefficients of the four spline segments from 8 to 12 for each of the 
specifications. This simple calculation shows that a location with log 
population in 2000 of 12 has from 1.0 to 1.3 percentage points faster 
predicted annual growth from 2000 to 2017, corresponding to a larger 
cumulative increase in population from 19 to 25 percentage points.

Although characteristics excluded from these regressions could ac-
count for the positive correlation between growth and size, such a pos-
sibility seems unlikely. On their own, the 67 characteristics included in 
the column 4 regression account for more than half of the variation in 
population growth, a high share given the many idiosyncratic circum-
stances affecting local growth. Moreover, many excluded characteristics 
are likely to endogenously depend on size. Including such endogenous 
variables in a regression may help identify channels through which size 
affects growth but might also mask the effect of size through all channels. 

The positive, statistically significant coefficients reported in Table 1 
suggest that the net benefits of larger size—the gross agglomerative ben-
efits of higher productivity and amenities less the gross agglomerative 
costs of higher housing prices and more traffic congestion—increased for 
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non-core counties, micropolitan areas, and the smallest metropolitan ar-
eas. But the coefficients do not distinguish whether this net change arose 
from an increase in agglomerative benefits or a decrease in agglomerative 
costs. The former seems more likely, as these groups of locations have 
historically been characterized by relatively low home prices, minimal 
commuting traffic, and few other congestion costs. 

Conversely, the negative coefficients on the uppermost spline seg-
ment suggest that the net benefits of larger size may have decreased 
for metropolitan areas with population above 1.2 million. Again, the 
coefficients do not distinguish whether this arose from a decrease in ag-
glomerative productivity and amenities or an increase in agglomerative 
costs, both of which seem plausible. 

 The increased costs of size for larger locations

To distinguish whether changes in agglomerative benefits or costs are 
driving the relationship between growth and size, I look at the relation-
ship between population growth and population density. While strongly 
positively correlated with the level of population, population density 
appears to be more closely related to home prices, a key agglomerative 
cost, than does population. In particular, population density accounts for 
more than twice the variation in median home prices across medium and 
large metropolitan areas.19 In addition, population density is unlikely to 
affect businesses productivity. (Employment density, in contrast, is likely 
to affect businesses productivity by allowing more workers to interact 
with each other.)

Population density varies greatly within metropolitan areas, making 
“raw” density (total population divided by total land area) a poor summary 
measure of the density of the neighborhoods in which most residents live. 
For example, the raw density of the Las Vegas metropolitan area in 2000 
was 174 persons per square mile. However, this measure is misleading, as 
85 percent of Las Vegas residents lived in census tracts—small geographic 
units that typically include between 1,000 and 8,000 residents—with raw 
population of more than 2,100 persons per square mile. 

To better reflect the density most residents actually experience, I 
measure mean population density, calculated as the population-weight-
ed mean of each census tract’s raw density (Glaeser and Kahn 2004; 
Rappaport 2008a).20 Using this measure, the mean density of Las Vegas 
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in 2000 was 6,500 persons per square mile. Across all locations, mean 
density ranged from less than 1 person per square mile for the 35 loca-
tions with the lowest value to more than 8,000 persons per square mile 
for the five locations with the highest value. Mean population density 
in the New York City metropolitan area, 32,600 persons per square 
mile, was almost three times that of the second most dense metropoli-
tan area, Los Angeles. 

Table 2 reports results from regressing population growth on a 
spline of mean population density in 2000. The results in column 1 
show that before controlling for other characteristics, positive coeffi-
cients on three of the spline segments statistically differ from zero, im-
plying that increases in mean density within each of the corresponding 
ranges predict faster population growth. However, controlling for the 
baseline characteristics and industry composition pushes down each of 
these positive coefficients to near zero (column 3).21 In other words, 
any positive association between predicted growth and mean density 
may be driven by differences in the baseline characteristics and industry 
composition rather than by a change in agglomerative costs. 

In contrast, population growth is negatively correlated with in-
creases in mean population density within the uppermost segment, a 
relationship that strengthens as additional controls are added to the re-
gression. Controlling for the baseline characteristics and industry com-
position, the negative coefficient on the uppermost segment statistically 
differs from 0 at the 1 percent level (column 3). Additionally, control-
ling for occupation shares leaves this coefficient essentially unchanged 
(column 4). Holding the baseline characteristics, industry composition, 
and occupation composition constant, each log point increase in mean 
population density from 8 to 10.4 (that is, each 2.7 multiplicative in-
crease in mean population density from 3,000 to 33,000 persons per 
square mile) is associated with 0.45 percentage point slower predicted 
population growth per year. This implies that the New York City met-
ropolitan area would have had 1.1 percentage point per year higher 
predicted population growth if it had had St. Louis’ mean population 
density in 2000 of 3,000 persons per square mile (rather than 32,600). 
Correspondingly, New York City’s predicted increase in population 
from 2000 to 2017 would have been 20 percentage points higher. 
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Table 2
Partial Correlation of Population Growth with Mean  
Population Density

 **	 Significant at the 5 percent level
***	 Significant at the 1 percent level

Notes: Dependent variable is average annual population growth (percent) from 2000 to 2017. Regressions also in-
clude a constant. Standard errors are in parentheses and adjust for spatial correlation based on Conley (1999). Itali-
cized text reports the number of locations with mean population density that lies within each spline segment. Results 
for all variables included in the baseline regression are reported in appendix Table A-2. Replication code is available 
in an online data supplement. 

(1) (2) (3) (4)

Partial correlations of 2000–17  
population growth Own size only Baseline

Baseline and 
industry 

composition

Baseline,  
industry 

composition, 
and occupation 

composition

Controls:  

Metropolitan adjacency (2)  x x x

Weather (10) x x x

Coast and river adjacency (7) x x x

Hilliness (2) x x x

Shale basin (6)  x x x

Higher education (1)  x x x

Industry composition (18)  x x

Occupation composition (21)  x

ln(dens) up to 3 (20 persons/square mile)
398 locations

0.07
(0.05)

0.14***
(0.04)

0.05
(0.05)

0.08**
(0.04)

ln(dens) from 3 to 4 (55)
277 locations

0.29***
(0.10)

0.12
(0.09)

0.07
(0.08)

0.02
(0.07)

ln(dens) from 4 to 5 (148)
398 locations

−0.05
(0.10)

0.03
(0.08)

−0.03
(0.07)

−0.02
(0.06)

ln(dens) from 5 to 6 (403)
383 locations

0.21**
(0.10)

0.12
(0.08)

0.06
(0.08)

0.06
(0.07)

ln(dens) from 6 to 7 (1,100)
427 locations

0.14
(0.11)

0.15
(0.10)

0.08
(0.08)

0.06
(0.08)

ln(dens) from 7 to 8 (3,000)
299 locations

0.60***
(0.15)

0.39***
(0.13)

0.06
(0.13)

−0.02
(0.12)

ln(dens) from 8 to 10.4 (33,000)
56 locations

−0.11
(0.14)

−0.20
(0.15)

−0.44***
(0.15)

−0.45***
(0.16) 

Observations 2,258 2,258 2,258  2,258 

R2 0.16 0.37 0.49  0.51 

Adjusted R2 0.15 0.36 0.48 0.50 

Control variables  28 46  67 

R2, control variables  0.30 0.48  0.51 
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Among medium and large metropolitan areas, the negative correla-
tion between growth and density is especially strong when measured us-
ing each metro’s 95th percentile density. At least 95 percent of a metro’s 
residents live in a tract with raw density at or below its 95th percentile 
density and at least 5 percent live in a tract with raw density at or above 
its 95th percentile density. The negative relationship between growth 
and 95th percentile density stands out in a scatter plot of the former 
against the latter (Chart 7). The best-fit linear relationship between the 
two, shown by the black line, accounts for 12 percent of the variation 
in growth (as measured by an R2 statistic; see column 1 of Table 3).22 

Although uncorrelated with population on its own, growth across 
medium and large metropolitan areas is strongly positively correlated 
with population after controlling for 95th percentile density, illustrat-
ing the partly offsetting benefits and costs of size (columns 2 and 3 
of Table 3). More specifically, the positive coefficient on population 
in column 3 likely captures a gross increase in agglomerative benefits, 
while the negative coefficient on density—which is considerably larger 
in magnitude than when not controlling for population (column 3 ver-
sus column 1)—likely captures a gross increase in agglomerative costs. 
On net, the gross increase in costs dominates the gross increase in ben-
efits, which is reflected in the negative coefficient on density when not 
controlling for size (column 1).  

Population density, while unlikely to benefit businesses’ produc-
tivity, may contribute positively to metros’ amenities. For example, 
high population density helps support nearby urban amenities such 
as pedestrian access to varied restaurants, cafes, bars, retailers, and per-
formance venues. Consistent with this possibility, growth is positively 
correlated with spikes in population density, measured by the increase 
in log density from a metro’s 95th percentile tract to its 99th percentile 
tract (column 4 of Table 3). This positive correlation may be closely 
related to the increased tendency of young professionals to live near 
metropolitan central business districts (Couture and Handbury 2017; 
Baum-Snow and Hartley 2018)

Changes in agglomerative benefits and costs, as captured by par-
tial correlations with population and population density, account for a 
considerable share of the variation in population growth across medium 
and large metropolitan areas. Together, population and 95th percentile 
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Table 3
Partial Correlation of Population Growth with Population and 
Population Density

Partial correlations of 2000–17  
population growth (1) (2) (3) (4) (5)

ln(pop) 0.00
(0.09)

0.38***
(0.11)

0.34***
(0.10)

ln(95th percentile density) −0.48***
(0.10)

−0.82***
(0.14)

−0.79***
(0.13)

ln(99th percentile)−ln(95th percentile) 1.13**
(0.47)

1.07***
(0.36)

Observations
R2

87
0.12

87
0.00

87
0.20

87
0.09

87
0.28

**	 Significant at the 5 percent level
***	 Significant at the 1 percent level

Notes: Dependent variable is average annual population growth (percent) from 2000 to 2017. Regressions also 
include a constant. Standard errors are in parentheses and adjust for spatial correlation based on Conley (1999). 
Replication code is available in an online data supplement.

Chart 7
Growth versus 95th Percentile Population Density, Medium  
and Large Metropolitan Areas

Notes: Metropolitan areas are labeled with the name of their largest city. The blue line represents the best fit based on 
a linear regression. The orange dashed line corresponds to a growth rate of 0. The Denver and Boulder metropolitan 
areas are combined. Replication code is available in an online data supplement.
Sources: U.S. Census Bureau and author’s calculations. 
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population density account for 20 percent of the variation in growth 
(column 3 of Table 3). Including the difference in log density between 
the 99th and 95th percentile boosts the share of variation accounted 
for to 28 percent (column 5 of Table 3). Including the 25th and 75th 
percentile densities further boosts the share of variation accounted for 
to 38 percent (not shown).23 This ability to account for more than one-
third of the variation in population growth suggests that the shifting 
contributions of size, as measured by both population and density, to 
productivity and amenities have been among the most important deter-
minants of recent metropolitan population growth. 

IV.	 Conclusions

The population and employment of small and large locations in the 
United States have been diverging for several decades. For locations with 
a population in 2000 up to about 500,000, population growth from 
2000 to 2017 was positively correlated with initial population. For loca-
tions within this group with a population up to about 160,000, size itself 
is likely to have driven the positive correlation, reflecting a net increase 
in agglomerative productivity and amenities over the past few decades. 

In contrast, population growth from 2000 to 2017 was negatively 
correlated with mean population density at high levels, likely reflecting 
a net increase in agglomerative costs such as housing prices and traffic 
congestion over the past few decades. Similarly, growth across medium 
and large metropolitan areas was strongly negatively correlated with 
population density measured at the 95th percentile. 

This pattern of local population growth—positively correlated 
with population across smaller locations and negatively correlated with 
population density across larger locations—is likely to persist for a con-
siderable time, as net flows of households and jobs gradually move loca-
tions toward a spatial equilibrium.

Population and employment growth’s dependence on size and  
density has some important public policy implications. First, small  
locations seeking to reverse declining population and employment 
face a formidable challenge, as they must offset the decreasing relative 
productivity and amenities attributable to their small size. Small loca-
tions that have succeeded in doing so have primarily relied on exog-
enous characteristics, such as natural resources, nice weather, natural  
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recreational opportunities, the presence of a university, or adjacency to 
a large metropolitan area. For small locations that lack such offsetting 
characteristics, public policy may be more effective ameliorating the 
negative consequences of decline than reversing it. 

Second, economic development strategies that attract new jobs may 
benefit existing local residents and businesses if the associated agglom-
erative benefits exceed the associated agglomerative costs. For example, 
the increase in local employment may sufficiently increase the produc-
tivity of existing businesses to allow them to pay higher wages. It may 
also attract households and workers who sufficiently increase the local 
tax base to offset any associated increases in public spending. In other 
cases, however, successfully attracting jobs may hurt existing residents 
and businesses. In particular, tax incentives narrowly targeted at one 
or a handful of businesses may lower government services and increase 
the tax burden for existing residents and businesses. Rather than nar-
rowly targeting incentives, more effective public policy might focus on 
policies that broadly benefit local businesses and residents, both existing 
and new.
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Table A-1
Partial Correlation of Population Growth with Population and 
Baseline Controls (Regression Reported in Table 1, Column 2)

Appendix

Additional Tables

Right-hand-side variable Coefficient Standard error t-statistic p-value

Initial population spline 

ln(pop) from 5.9 to 8 (3,000) 0.16 0.10 1.51 0.130

ln(pop) from 8 to 9 (8,100) 0.35*** 0.07 5.28 0.000

ln(pop) from 9 to 10 (22,000) 0.27*** 0.07 3.90 0.000

ln(pop) from 10 to 11 (60,000) 0.19*** 0.06 2.90 0.004

ln(pop) from 11 to 12 (163,000) 0.50*** 0.09 5.58 0.000

ln(pop) from 12 to 13 (440,000) 0.09 0.10 0.95 0.343

ln(pop) from 13 to 14 (1.2 million) 0.17 0.15 1.12 0.264

ln(pop) from 14 to 16.7 (18.3 million) −0.13 0.12 −1.11 0.267

Metropolitan adjacency (1/0 indicator)

Micro/non-core adjacent to metro with pop. 
> 1 million

0.33*** 0.07 4.59 0.000

Micro/non-core adjacent to metro with pop. 
≤ 1 million

0.05 0.05 1.10 0.270

Weather

Average max daily temp. in Jan. (linear) 1.92E-02*** 5.89E-03 3.25 0.001

Average max daily temp. in Jan. (quadratic) 7.16E-04*** 2.16E-04 3.32 0.001

Average max daily heat index in July (linear) −3.81E-04 6.53E-03 −0.06 0.954

Average max daily heat index in July 
(quadratic)

−2.65E-04 3.63E-04 −0.73 0.466

Average mean daily relative humidity in July 
(linear)

−2.63E-02*** 7.83E-03 −3.36 0.001

Average mean daily relative humidity in July 
(quadratic)

6.26E-05 3.08E-04 0.20 0.839

Average annual rainfall (linear) −2.66E-03 8.19E-03 −0.32 0.745

Average annual rainfall (quadratic) 3.15E-04*** 1.16E-04 2.71 0.007

Average annual number of days with rain 
(linear)

6.60E-03* 3.73E-03 1.77 0.077

Average annual number of days with rain 
(quadratic)

−1.32E-04*** 3.71E-05 −3.57 0.000
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Table A-1 (continued)

Right-hand-side variable Coefficient Standard error t-statistic p-value

Coast and river adjacency (1/0 indicator)    

Atlantic, Northeast census region 0.19 0.15 1.29 0.196

Atlantic, South Atlantic census division 0.53*** 0.15 3.58 0.000

Gulf of Mexico 0.12 0.17 0.71 0.478

Pacific -0.11 0.26 −0.43 0.666

Great Lakes −0.32*** 0.11 −2.95 0.003

Within 40 km of river on which nav. in 1968 −0.19** 0.08 −2.44 0.015

Within 40 km of major river 0.02 0.05 0.31 0.755

Hilliness    

Ratio of std. dev. of altitude to land area  
(linear)

1.43*** 0.37 3.90 0.000

Ratio of std. dev. of altitude to land area  
(quadratic)

−0.55*** 0.13 −4.36 0.000

Shale oil basins (1/0 indicator)    

Anadarko 0.35*** 0.13 2.76 0.006

Bakken 0.87*** 0.20 4.32 0.000

Eagle 0.56*** 0.19 3.00 0.003

Haynesville −0.13 0.11 −1.13 0.259

Niobrara 0.24** 0.11 2.27 0.023

Permian 0.08 0.15 0.50 0.617

Higher education    

Ratio of post-secondary students to pop. 2.32*** 0.37 6.30 0.000

  * 	 Significant at the 10 percent level
 **	 Significant at the 5 percent level
***	 Significant at the 1 percent level

Notes: Table reports estimation results for all variables included in the regression reported in column 2 of Table 1. 
Standard errors adjust for spatial correlation based on Conley (1999). The p-value is the probability that the absolute 
value of the t-statistic would exceed its regression value under the null hypothesis that population growth is uncor-
related with the corresponding right-hand-side variable. Linear weather coefficients estimate the partial derivative of 
growth with respect to each of the five weather measures for a location with the mean value of that measure. Replica-
tion code is available in an online data supplement. 
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Table A-2
Partial Correlation of Population Growth with Mean Population 
Density and Baseline Controls (Regression Reported in Table 2, 
Column 2)
Right-hand-side variable Coefficient Standard error t-statistic p-value

Initial population spline     

ln(dens) up to 3 (20 persons/sq. mile) 0.14*** 0.04 4.01 0.000

ln(dens) from 3 to 4 (55) 0.12 0.09 1.44 0.149

ln(dens) from 4 to 5 (148) 0.03 0.08 0.33 0.740

ln(dens) from 5 to 6 (403) 0.12 0.08 1.42 0.155

ln(dens) from 6 to 7 (1,100) 0.15 0.10 1.60 0.110

ln(dens) from 7 to 8 (3,000) 0.39*** 0.13 3.09 0.002

ln(dens) from 8 to 10.4 (33,000) −0.20 0.15 −1.38 1.831

Adjacency to metro area (1/0 indicator)     

Micro/non-core adjacent to metro with pop.  
> 1 million

0.30*** 0.07 4.13 0.000

Micro/non-core adjacent to metro with pop.  
≤ 1 million

0.01 0.04 0.11 0.911

Weather     

Average max daily temp in Jan. (linear) 2.74e-02*** 5.94e-03 4.62 0.000

Average max daily temp in Jan. (quadratic) 8.09e-04*** 2.23e-04 3.63 0.000

Average max daily heat index in July (linear) −7.89e-03 6.81e-03 −1.16 1.753

Average max daily heat index in July (qua-
dratic)

−4.52e-04 3.95e-04 −1.15 1.748

Average mean daily relative humidity in July 
(linear)

−2.59e-02 8.45e-03 −3.06 1.998

Average mean daily relative humidity in July 
(quadratic)

2.80e-04 3.19e-04 0.88 0.380

Average annual rainfall (linear) 7.32e-04 8.12e-03 0.09 0.928

Average annual rainfall (quadratic) 2.03e-04* 1.21e-04 1.67 0.094

Average annual number of days with rain 
(linear)

7.92e-03** 3.90e-03 2.03 0.043

Average annual number of days with rain 
(quadratic)

−1.44e-04 4.13e-05 −3.49 2.000

Coast and river adjacency (1/0 indicator)     

Atlantic, Northeast census region 0.28* 0.15 1.90 0.058

Atlantic, South Atlantic census division 0.50*** 0.19 2.63 0.009

Gulf of Mexico 0.17 0.20 0.85 0.394

Pacific 0.03 0.26 0.12 0.906

Great Lakes −0.26 0.10 −2.46 1.986

Within 40 km of river on which nav. in 1968 −0.21 0.08 −2.56 1.989

Within 40 km of major river 0.05 0.05 1.08 0.281
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Right-hand-side variable Coefficient Standard error t-statistic p-value

Hilliness     

Ratio of std. dev. of altitude to land area  
(linear)

1.06*** 0.35 2.98 0.003

Ratio of std. dev. of altitude to land area  
(quadratic)

−0.43 0.13 −3.41 1.999

Shale oil basins (1/0 indicator)     

Anadarko 0.35*** 0.10 3.32 0.001

Bakken 0.85*** 0.20 4.20 0.000

Eagle 0.70*** 0.21 3.37 0.001

Haynesville −0.06 0.13 −0.46 1.353

Niobrara 0.24** 0.10 2.46 0.014

Permian −0.07 0.17 −0.41 1.317

Higher education     

Ratio of post-secondary students to population 2.70*** 0.41 6.66 0.000

Table A-2 (continued)

  * 	 Significant at the 10 percent level
 **	 Significant at the 5 percent level
***	 Significant at the 1 percent level

Notes: Table reports estimation results for all variables included in the regression reported in column 2 of Table 2. 
Standard errors adjust for spatial correlation based on Conley (1999). The p-value is the probability that the absolute 
value of the t-statistic would exceed its regression value under the null hypothesis that population growth is uncor-
related with the corresponding right-hand-side variable. Linear weather coefficients estimate the partial derivative of 
growth with respect to each of the five weather measures for a location with the mean value of that measure. Replica-
tion code is available in an online data supplement.
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Endnotes

1Holding delineations constant causes the calculated population growth rates 
of many fast-growing metropolitan areas to be lower than those calculated using 
population numbers published by the U.S. Census Bureau. The difference reflects 
that the official borders of metropolitan areas, delineated by the Office of Man-
agement and Budget, were redrawn after the 2010 decennial census. These border 
changes led to the inclusion of additional counties in many fast-growing metro-
politan areas, reflecting the spread of suburbs into previously undeveloped land.

2Using a standard additive scale, the horizontal distance between the 1 log 
point increase from 3.3 million to 8.9 million (a 2.7 multiplicative increase) 
would be 3,000 times larger than the 1 log point increase from 1,100 to 3,000 
(also a 2.7 multiplicative increase). 

3I measure the average relationship by a linear Epanechnikov kernel with 
a bandwidth of 1.5 log points. Replication code is available in an online data 
supplement.  

4The Palm Coast metropolitan area was merged into the Delton-Daytona 
Beach metropolitan area following the 2010 decennial census. 

5Throughout the nineteenth and early twentieth centuries, population 
growth was negatively correlated with size across small locations. Beginning in the 
late nineteenth century, population growth was strongly positively correlated with 
size across medium and large locations. This steep positive relationship flattened 
in about 1960 (Desmet and Rappaport 2017). 

6I measure employment in 2014 by values reported in the 2016 American 
Community Survey five-year summary file, which is based on households’ re-
sponses to surveys from 2012 through 2016. I measure employment in 2000 by 
the number of individuals reporting they were employed the week prior to fill-
ing out their census questionnaire as disseminated in the 2000 decennial census 
summary files. Alternatively, measuring employment based on administrative data 
collected from firms, the positive relationship between growth and size is consid-
erably weaker. This difference in the relationship between growth and the level of 
employment may reflect that a larger share of workers in small locations are self-
employed or hold other positions for which administrative data, which are based 
on firms’ payment of unemployment insurance taxes, are not collected. 

7Productivity measures the efficiency with which firms transform labor and 
other inputs into a final output good or service. A location characteristic can be 
interpreted as increasing productivity if it allows businesses to pay higher wages for 
labor and higher prices for other inputs without hurting their profits. Low rates 
of taxes that fall on businesses can thus be interpreted as positively contributing 
to a location’s productivity, reflecting that businesses care about after-tax profits. 
But tax incentives to lure a single business to a location typically leave the after-tax 
productivity of most existing businesses unaffected. A location characteristic can 
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be interpreted as increasing amenities if it makes households willing to pay higher 
house prices and accept lower wages. Low rates of taxes that fall on individuals 
can be interpreted as positive amenities, as they make individuals willing to accept 
lower pre-tax wages and pay higher housing prices compared to living elsewhere. 
However, low taxes may result in lower amenities in the form of public services. 

8Many characteristics have both exogenous and endogenous components. 
For example, many seaports are protected by a constructed breakwater or require 
periodic dredging. For these ports, location along an ocean coast is clearly exog-
enous, while the breakwater and dredging are likely to be endogenous, based on 
judgments about the economic potential of the location. The industrial compo-
sition of locations similarly combines exogenous and endogenous components. 
In part, industrial composition depends on economic considerations from the 
distant past, which may no longer be relevant today. But industrial composition 
can also evolve over time in response to changing location productivity, amenities, 
and other economic circumstances. 

9Congestion exemplifies a nonpecuniary cost, meaning that it does not take 
the form of an explicit monetary price. In contrast, higher land and house prices 
are pecuniary costs, which do not directly affect productivity and amenities.  

10Of course, workers’ skills differ as do their tastes for different consumption 
amenities. This is a second reason, in addition to variation in house prices, that 
population in a spatial equilibrium is distributed across many locations rather 
than clustered in a handful of locations with the highest productivity and ameni-
ties. Over the past few decades, workers have increasingly sorted into different 
metropolitan areas based on their skill type (Moretti 2012).

11This increase in agglomerative benefits can equivalently be thought of as the 
disadvantages of small size worsening during recent decades. Consistent with this, 
a measure of business dynamism has been declining in small locations relative to 
large locations (Brown 2018). 

12The increase in the equilibrium population of larger locations relative to the 
equilibrium population of smaller locations (for locations with an initial popula-
tion below 500,000) is consistent with the level of equilibrium population in-
creasing for both types of locations. In this case, all that is required is that the 
proportional increase in the equilibrium population of the large locations exceed 
the proportional increase of the population of the small locations.

13This interpretation corresponds with a rise in the elasticity of productiv-
ity and amenities with respect to size for increases in population up to 500,000; 
an unchanged elasticity with respect to size for increases in population between 
500,000 and 3 million; and a decline in the elasticity for increases in population 
above 3 million. 

14Numerical results from a model of metropolitan size suggest that higher 
housing prices and traffic congestion contribute about equally to agglomerative 
costs (Rappaport 2016). If commuting speeds were to remain at their free-flow 
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level, metropolitan areas with the highest productivity would be an order-of-mag-
nitude larger than they actually are. 

15Research finds that building more highways significantly increases the num-
ber of commuters, leaving travel times mostly unchanged (Duranton and Turner 
2011). Building highways can thus increase a location’s equilibrium population, al-
lowing migration from elsewhere until traffic congestion returns to its previous level. 

16Consistent with the second interpretation, recent research suggests that the 
elasticity of agglomerative costs with respect to population is increasing (Combes, 
Duranton, and Gobillon 2015; Rappaport 2016). In other words, proportional 
increases in agglomerative costs due to an increase in location size are higher for 
larger locations. Thus, if the population of all locations proportionally increases 
by the same amount— for example, due to national population growth—then 
agglomerative costs will rise more for larger locations. 

17The baseline controls include two indicator variables for metropolitan ad-
jacency: the first variable takes a value of 1 for micropolitan areas and non-core 
counties adjacent to a metropolitan area with a population below 1 million and 
0 otherwise, while the second takes a value of 1 for micropolitan and non-core 
counties adjacent to a metropolitan area with a population above 1 million and 
0 otherwise. The 10 weather variables are linear and quadratic measures of win-
ter temperature, the summer heat index, summer humidity, annual rainfall, and 
annual rainy days. The five coast variables are indicators taking the value of 1 if 
a location borders a coast along the Great Lakes, the Pacific Ocean, the Gulf of 
Mexico, the North Atlantic (Maryland north to Maine), and the South Atlantic 
(Virginia south to Florida). The two river variables are indicators that take a value 
1 for locations that touch a major river and for locations that touch a river on 
which there was commercial navigation in 1968. The two hilliness variables are 
the linear and quadratic ratio of the standard deviation of altitude within a loca-
tion, measured across 1.25-arc-minute grid cells, to the location’s total land area. 
The six shale basin variables are indicators taking the value of 1 for locations in 
each of the Anadarko, Bakken, Eagle, Haynesville, Niobrara, and Permian basins. 
The presence of colleges and universities is measured by the share of a location’s 
population enrolled in post-secondary classes. The appendix reports the results of 
the column 2 regression for all of these control variables. The variables themselves 
are included in the online data supplement.

18The respective p-values on the uppermost spline segment for the regressions 
reported in columns 3 and 4 are 0.116 and 0.103.

19The variation in log population accounts for 71 percent of the variation in 
the log of mean population density across all locations and 47 percent of the varia-
tion across medium and large metropolitan areas (as measured by R2 statistics). 
Across medium and large metropolitan areas, log mean population density and 
log population account for 36 percent and 17 percent, respectively, of the varia-
tion in log median home price. Across all locations, however, log mean population 
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density accounts for a smaller share of the variation in log median home prices 
than does log population (25 percent versus 37 percent).

20The raw density of a metropolitan area is arithmetically equal to the land-
weighted mean of the raw population density of each tract. 

21The appendix reports the results of the column 2 regression for all con-
trol variables.

22The negative correlation between growth and density across medium and 
large metropolitan areas is much weaker for more standard benchmarks of den-
sity: mean population density can account for only 4 percent of the variation in 
growth, and median density cannot account for any of it. Instead, the negative 
correlation becomes meaningful at 75th percentile density, which accounts for 4 
percent of the variation in growth. One possible explanation is that density mea-
sured at high percentiles reflects opportunities for apartment construction at sites 
near metropolitan centers (Rappaport 2017). The negative correlation between 
growth and density is also considerably weaker at the highest percentiles: mea-
sured at the 99th percentile, density accounts for only 5 percent of the variation in 
growth; measured at the maximum density within each metro, density accounts 
for only 2 percent of the variation in growth.

23A regression on the 25th, 75th, 95th, and 99th percentile densities in 2000 
accounts for 37 percent of the variation in population growth from 2000 to 2017. 
An arithmetically equivalent regression has right-hand-side variables for the 25th 
percentile density as well as the increase in density from the 25th to 75th per-
centile, the increase from the 75th to the 95th percentile, and the increase from 
the 95th to the 99th percentile. The corresponding coefficients, each of which 
statistically differs from 0 at the 1 percent level, are negative on the first three 
variables and positive on the last variable. The negative coefficients are increasing 
in magnitude, implying that a 1 log point increase in 25th percentile density is 
associated with a smaller decrease in predicted growth than a 1 log point larger 
increase in density from the 25th to 75th percentiles, which in turn is associated 
with a smaller decrease in predicted growth than a 1 log point larger increase in 
density from the 75th to the 95th percentiles. Additionally, including log popu-
lation boosts the share of variation accounted for to 38 percent, but the associ-
ated coefficient on log population does not statistically differ from 0. The online 
data supplement includes metropolitan density measured at numerous percentile 
benchmarks ranging from the 1st to the 99th. 
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After an unprecedented decline from June 2014 to March 2016, 
the real price of oil more than doubled, renewing interest in    
 the effects of oil price fluctuations on the U.S. economy. An 

increase in oil prices can affect the economy of a net oil importing 
country by lowering the consumers’ demand for other goods and ser-
vices. At the same time, an increase in oil prices can increase the cost of 
production, thereby lowering profits and reducing investment. 

However, the effect of higher oil prices on investment may have 
changed. Following the recovery in oil prices from mid-2016 to mid-
2018, U.S. oil investment almost doubled. This is unsurprising, as 
higher oil prices make oil businesses more profitable, allowing them 
to increase production and investment. More surprising is that total 
U.S. business fixed investment appears to have mimicked the pattern 
of oil investment: increasing until late 2014, declining in 2015, then 
increasing once again since 2016. This more recent, positive correlation 
between oil prices and U.S. investment growth may be related to the 
surge in U.S. oil production known as the shale boom. 

In the mid-2000s, the United States began increasing its oil and 
gas production through horizontal drilling and hydraulic fracturing, 
becoming one of the largest oil producers in the world. As a result, 
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when oil prices increase, U.S. oil producers benefit more now than in 
the past. These benefits may also spill over to other industries, positively 
affecting the overall economy. Given increasing production, declining 
imports, and some specific properties of shale oil—high initial produc-
tion rates, the continuous drilling required to maintain production, 
and higher sensitivity to price changes—it is plausible to expect that 
the United States may respond differently to oil price changes now than 
in the past.  

In this article, I explore the effect of unexpected oil price chang-
es—or “shocks”—on U.S. investment, a key channel through which 
oil price shocks affect the economy. After controlling for the source 
of the changes in oil prices, I investigate the effect of oil supply, oil-
specific (shocks that only affect the oil market), and aggregate demand 
shocks on oil and non-oil components of U.S. private nonresidential 
fixed investment and explore how the response of U.S. investment may 
have changed since the shale boom. I find that oil investment has be-
come more responsive to oil supply, oil-specific, and aggregate demand 
shocks since the shale boom. The changing responsiveness to fluctua-
tions in oil prices extends beyond the more direct effects on oil invest-
ment. I find that non-oil and total investment have also become more 
responsive to demand shocks and less responsive to oil supply shocks 
since the shale boom. These greater spillovers from the oil sector are not 
present prior to the shale boom.      

I. 	 Oil Price Changes and the U.S. Economy  

The sharp oil price decline from June 2014 to March 2016 fueled 
a debate about its overall effect on the U.S. economy. Oil price shocks 
affect the economy primarily through consumers’ and firms’ spending 
(Hamilton 2008). A decline in oil prices can increase consumption, 
as consumers spend less of their income on fuels and increase their 
demand for other goods and services. Increased demand for a firm’s 
output can, in turn, increase business capital spending too. The lower 
cost of production associated with declining oil prices can also lead 
to increased investment. As a result, many observers expected the 
2014–16 oil price decline to boost U.S. economic growth. However, 
that boost did not seem to materialize (Baumeister and Kilian 2016b;  
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International Monetary Fund 2016). The reason may be related to the 
recent boom in U.S. oil production. 

The shale revolution—brought about by the broad application of 
horizontal drilling and hydraulic fracturing—ended a decades-long pe-
riod of declining U.S. oil production. In 2005, the United States began 
increasing its oil and gas production and became a major producer in 
a short time. Since 2013, the United States has been the world’s top 
producer of petroleum hydrocarbons (Energy Information Administra-
tion 2018). Therefore, although the United States is still a net importer 
of oil, its dependence on foreign oil has declined significantly as net oil 
imports have plummeted. 

In line with the increased production, the share of oil investment 
in total U.S. investment has also increased materially. The share of oil 
investment in total nonresidential fixed investment in structures and 
equipment increased from an average of 3.4 percent in the 1986:Q1–
2005:Q4 period to an average of 10.5 percent in the 2006:Q1–
2014:Q2 period. As a result, when oil prices fell sharply, the oil sector 
was hit hard. For example, Chart 1 shows that following the substantial 
decline in oil prices in the second half of 2014, U.S. oil investment 
collapsed. Given the increased importance of this sector, it is natural to 
ask whether the shale boom may have changed the overall relationship 
between oil and the U.S. economy.    

How oil price shocks are transmitted to the economy has been a 
central question in macroeconomics and of interest to policymakers. 
Academic researchers have extensively studied the effects of oil price 
changes on consumer spending, finding quantitatively important effects 
(for example, Mehra and Petersen [2005]; Edelstein and Kilian [2009]; 
Gelman and others [2016], Ready [2018]; Iacoviello [2016]; Alsalman 
and Karaki [2017]; and Baumeister, Kilian, and Zhou [2018]). How-
ever, few have studied the response of firms’ investment spending to oil 
price changes. Notable exceptions are Edelstein and Kilian (2007) and 
Loria (2017). Edelstein and Kilian (2007) investigate how nonresiden-
tial fixed investment in structures and equipment responds to energy 
price changes. They find that while the estimated response of nonresi-
dential fixed investment in structures and equipment excluding oil is 
small and statistically insignificant, the estimated response of oil invest-
ment is large and statistically significant.1 Loria (2017) shows that the 
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size of the shock matters for the response of U.S. nonresidential fixed 
investment in structures and equipment. She finds that while a small 
oil price increase leads to a decline in investment, the effect of a large 
oil price increase is ambiguous, as it results in higher oil and oil-related 
investment but lower non-oil investment.2 

Recent changes in the price of oil have raised questions once again 
about the effect of changing oil prices on the U.S. economy (see, for 
example, Klein [2018]; Liesman [2018]; and Yang and Sider [2018]). 
The real price of oil has more than doubled since its low in early 2016, 
bringing with it a substantial increase in oil investment (Chart 1). Mo-
tivated by the recent recovery in oil prices and the small amount of 
prior research, I investigate the effect of oil supply and demand shocks 
on U.S. private nonresidential fixed investment categories and assess 
whether this effect may have changed after the shale boom.     

II. 	 The Effects of Oil Price Shocks on Nonresidential 
Fixed Investment in Structures and Equipment

Oil prices fluctuate for several reasons. Increasing global economic 
activity can push up demand and increase oil prices, whereas a larger 
global oil supply can cause oil prices to decline. Oil prices can also 

Chart 1
Real Oil Price versus Oil Investment
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move due to shifts in expectations about future oil supply or demand 
growth. Distinguishing between the factors driving oil price changes is 
important, as these factors tend to have very different effects on macro-
economic aggregates (Kilian 2009). For example, if an oil price increase 
is driven by an unexpected increase in global economic activity, aggre-
gate investment will likely increase due to booming aggregate demand. 
However, if an oil price increase is driven by an unexpected decline in 
the global oil supply, aggregate investment will likely decline due to the 
higher cost of production. Investigating the dynamic effects of oil price 
shocks on U.S. investment requires a model that incorporates measures 
of the supply and demand shocks driving oil price changes. 

Decomposing oil price shocks into oil supply and demand shocks

To disentangle the factors driving oil price movements, I use the 
framework from Kilian (2009). Kilian proposes a monthly three-variable 
structural vector autoregression (SVAR) to identify underlying demand 
and supply shocks in the global oil market. This framework identifies 
three shocks: aggregate demand shocks, oil-specific demand shocks (or 
precautionary demand shocks), and oil supply shocks. Aggregate demand 
shocks capture shifts in oil prices driven by changes in global real eco-
nomic activity. These shocks reflect changes in demand for all industrial 
commodities. Oil-specific demand shocks, on the other hand, capture 
oil price changes driven by shocks specific to the crude oil market. For 
example, changes in expectations about future oil supply growth—such 
as an unexpected discovery of supply resulting in expectations of higher 
future supply growth—or demand growth can cause fluctuations in oil-
specific demand. Finally, oil supply shocks capture shifts in oil prices 
driven by changes in the global oil supply. For example, a disruption to 
oil production would cause oil prices to increase. 

I extract the monthly series of oil supply and demand shocks from 
the SVAR for two periods: January 1986 to December 2005—the pre-
shale period—and January 1986 to December 2017—the full sample 
(see the appendix for details on how the shocks are recovered from 
observables). I end the pre-shale period in 2005 because that is the year 
U.S. oil and gas production began increasing (Çakır Melek 2015). 

Responses of the real price of oil to the shocks extracted from the 
SVAR show that demand shocks and oil supply shocks have different 
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effects (see the appendix for the responses and more details). Consis-
tent with the findings in Kilian (2009) and Davig and others (2015), 
an unexpected positive aggregate demand shock leads to a persistent 
increase in the price of oil, while an unexpected positive oil-specific 
demand shock causes a sharp, very large, and persistent increase in the 
real price of oil that is also highly statistically significant. The increase 
in the price of oil due to a negative oil supply shock, on the other hand, 
is less persistent. 

These findings reemphasize the importance of decomposing chang-
es in real oil prices into oil supply shocks and oil-specific and aggregate 
demand shocks in examining the effect of oil price shocks on macro-
economic aggregates. 

The response of U.S. investment to oil price shocks

After extracting the series of structural oil shocks from the model, I 
estimate the effects of these shocks on real private nonresidential fixed 
investment in structures and equipment as well as its components.  

Because data on U.S. investment are only available at the quarterly 
frequency, I construct measures of quarterly oil price shocks by averag-
ing the monthly structural innovations derived from the SVAR for each 
quarter. I then estimate the response of several U.S. investment catego-
ries to oil supply and demand shocks via ordinary least squares (OLS) 
according to the following equation:  

where ΔIs,t refers to the quarterly percent change of component s of real 
private nonresidential fixed investment in structures and equipment, 
αj denotes the constant, ujt denotes the error, and j refers to aggregate 
demand, oil-specific demand, and oil supply shocks.3

The Bureau of Economic Analysis (BEA)’s National Income and 
Product Accounts provide data on different components of private 
nonresidential fixed investment in structures and equipment. Table 1 
shows the average shares of different components of private nonresi-
dential fixed investment in structures and equipment. The BEA pres-
ents nonresidential private fixed investment in structures in five broad 
categories that have subcategories—or in some cases, sub-subcategories. 
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Source: BEA.

Table 1
Average Shares of Private Nonresidential Fixed Investment  
in Structures and Equipment by Category

Share (percent)

Investment component 1986:Q1–2005:Q4 1986:Q1–2017:Q4

Structures 31.2 32.5

Commercial and health care 13.1 11.8

Manufacturing 4.1 3.9

Mining exploration, shafts, and wells 3.0 5.0

Power and communication 4.7 5.4

Other 6.3 6.3

Equipment 68.8 67.5

Information processing 24.7 23.9

Industrial 15.8 15.0

Transportation 14.7 14.5

Other 13.2 13.2

Mining and oil field machinery 0.4 0.9

Total 100 100

Oil 3.4 5.9

Non-oil 96.6 94.1

Similarly, the BEA breaks nonresidential private fixed investment in 
equipment into four broad categories that themselves have subcatego-
ries or sub-subcategories. 

In this article, I consider the following broad investment categories 
for the impulse responses: oil, non-oil, and total investment. I define oil 
investment as the sum of investment in mining exploration, shafts, and 
wells (structures) as well as investment in mining and oil field machin-
ery (equipment). And I define non-oil investment as the sum of the rest 
of the components of investment in structures and equipment. Total 
investment is total private nonresidential fixed investment in structures 
and equipment. The average shares of these broad categories are pre-
sented near the bottom of Table 1.   

Investment responses to aggregate demand shocks

Chart 2 shows the point estimates of the cumulative respons-
es of each investment category to aggregate demand shocks.4 The  
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Chart 2
Cumulative Response of Investment to Aggregate Demand Shocks
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left-hand-side panel presents the results for the pre-shale period 
(1986:Q1–2005:Q4). An unexpected surge in aggregate demand drives 
up investment in all investment categories but with a delay of about a 
year in the pre-shale period. The responses of non-oil and total invest-
ment categories are flat in the first year before increasing and remain-
ing positive. In response to an aggregate demand shock, oil investment 
shows a transitory increase in the first year followed by a large, sus-
tained increase. However, the responses are not statistically significant. 



ECONOMIC REVIEW •  FOURTH QUARTER 2018	 47

The recent boom in U.S. oil production, brought about by the 
application of horizontal drilling and hydraulic fracturing, has been a 
major event in the global oil markets. In late 2017, average monthly oil 
production surpassed its previous peak in the 1970s. Moreover, U.S. 
net oil imports have declined substantially following the shale boom 
(Çakır Melek and Nie 2018). As the share of oil investment in U.S. 
aggregate investment has increased, U.S. investment patterns have 
changed too (Rodziewicz 2018). To assess the effect of the shale boom 
on the response of U.S. investment to oil price shocks, I next present 
impulses responses for the full sample covering 1986:Q1–2017:Q4.5 

The right-hand-side panel in Chart 2 shows the responses of all three 
categories of investment in structures and equipment to aggregate de-
mand shocks over the full sample period. An unexpected surge in aggre-
gate demand drives up non-oil and total investment. The responses are 
positive on impact, statistically significant for about a year, and remain 
positive for almost two years before turning negative in the third year. 
The direct stimulating effect of higher aggregate demand on U.S. invest-
ment seems to dominate the indirect negative effect of higher oil prices 
in the short run. Higher costs due to higher oil (and other commodity) 
prices do not begin to weigh in for non-oil-related businesses until the 
second year. The response of oil investment, on the other hand, is posi-
tive at all horizons except in the first quarter and larger, but not statisti-
cally significant. 

Investment responses to oil-specific demand shocks

Chart 3 shows the responses of each investment category to oil-specific 
demand shocks. The left-hand-side panel of Chart 3 presents pre-shale 
responses. In the pre-shale period, an unexpected increase in oil-specific 
demand causes oil investment to increase relatively sharply in the first year, 
with the effect peaking in the second year. The increase is sustained and 
mostly statistically significant. The responses of investment in the other 
two categories, however, are either flat or negative in the first year and are 
negative after. The responses are not statistically significant.

In the full sample period, overall, investment is even more re-
sponsive to oil-specific demand shocks, as shown by the right-hand-
side panel of Chart 3. An unexpected increase in oil-specific demand 
causes oil investment to increase sharply in the first year. The increase is  
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sustained and highly statistically significant. More striking is the positive 
response of non-oil investment to an unexpected increase in oil-specific 
demand in the first two years. Non-oil investment increases on impact, 
with the effect peaking at the end of the first year. The response is sta-
tistically significant for more than a quarter. These patterns carry over 
to the response of total investment. An oil price increase driven by an 
unexpected increase in oil-specific demand increases total investment on 



ECONOMIC REVIEW •  FOURTH QUARTER 2018	 49

impact, with the effect peaking in the second year. The increase is persis-
tent and statistically significant for more than one year. 

The sustained increase in non-oil investment for more than a year 
in response to a positive oil-specific demand shock in the full sample is 
a notable result. Some might expect higher oil prices to decrease non-
oil investment due to higher costs and depressed consumer demand. 
However, positive spillover effects from the oil sector could drive this 
result. Higher oil prices make oil businesses more profitable, boosting 
oil investment and potentially boosting investment in other sectors. To 
the extent that additional investment in the oil sector creates additional 
demand for other sectors, positive spillovers from the oil sector to the 
aggregate economy may lead to higher aggregate investment.  

Although the oil sector represents a small share of the U.S. econ-
omy—around 1.6 percent of U.S. GDP in 2014—oil is an important 
production input and consumption good. As a result, oil price shocks 
can have important macroeconomic implications. Baqaee and Farhi 
(2017) find that negative shocks to crucial industries, such as “oil and 
gas,” can have a significantly larger aggregate effect than negative shocks 
to larger but less crucial industries. Moreover, oil shocks are highly per-
sistent and can thus generate significant welfare costs (Hitzemann and 
Yaron 2016). With potential spillover effects to other areas of the econ-
omy, the implications of oil price shocks might be amplified. 

Given the emergence of the shale oil sector in the past decade, posi-
tive spillover effects are likely. In fact, several studies document such ef-
fects. For instance, Allcott and Keniston (2018); Feyrer, Mansur, and 
Sacerdote (2017); and Gilje, Ready, and Roussanov (2016) examine the 
local implications of the shale boom and find strong positive spillovers 
to employment and wages at the local and regional level. Çakır Melek, 
Plante, and Yücel (2017) and Bjørnland and Zhulanova (2018) investi-
gate spillovers to the aggregate economy after the shale oil boom and find 
positive spillovers to output and investment. 

In that context, the responses presented in the left and right panels of 
Chart 3 reveal a key result that positive spillovers were not present before 
the shale boom. In the pre-shale period, an oil price increase driven by 
shocks specific to the oil market induces almost no effect—and in the sec-
ond year, a negative effect—on non-oil investment. The response of total 
investment is flat in the first year before turning negative. These responses 
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contrast with the positive, significant on impact responses of non-oil and 
total investment in the full sample, which peak in about a year. 

Investment responses to oil supply shocks

Chart 4 presents the responses of investment to an unexpected de-
cline in the global oil supply in the pre-shale period and in the full sam-
ple. The left-hand-side panel shows that pre-shale responses are mostly 
negative at all horizons in all categories. The response of oil investment 
is flat in the first year and statistically insignificant at all horizons. The 
negative responses of non-oil investment and total investment are per-
sistent and statistically significant for about a year. 

The right-hand-side panel in Chart 4 shows that an unexpected 
decline in global oil supply causes non-oil investment and total invest-
ment to decrease and remain persistently low at all horizons in the full 
sample as well. Oil investment, on the other hand, turns from negative 
to positive in the second year and remains positive thereafter. All three 
responses are statistically insignificant.6 

Key takeaways

Together, the impulse responses presented in Charts 2–4 reveal im-
portant differences in how the demand and supply shocks underlying 
the real price of oil affect U.S. investment—in other words, the source 
of the shock matters. In addition, the full sample results reveal that 
overall, investment is more responsive to aggregate and oil-specific de-
mand shocks in the first two years, but not as responsive to disruptions 
in the global oil supply. This is consistent with results showing that the 
real price of oil is more responsive to aggregate and oil-specific demand 
shocks than oil supply shocks, and that recently, oil price fluctuations 
have been driven largely by aggregate and oil-specific demand shocks 
(see the appendix for details).   

Comparing the impulse responses for the pre-shale period to those 
for the full sample yields two more key findings. Oil investment is less 
responsive to oil price shocks in the pre-shale period than in the full 
sample, regardless of the type of shock. In the pre-shale period, the re-
sponse of oil investment to an oil price increase is delayed: either the 
recovery begins much later or the increase is less sharp than in the full 
sample (the top panels of Charts 2–4). This is in line with conventional 
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Chart 4
Cumulative Response of Investment to Oil Supply Shocks
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oil production’s lower sensitivity to oil price changes than shale (uncon-
ventional) production, which relies more on investment.7 Shale produc-
tion is more capital intensive with high initial production rates, requires 
continuous drilling for maintaining production, and is more responsive 
to price changes, with shorter investment payback periods. 

Finally, investment is less responsive to an aggregate demand shock 
but more responsive to an oil supply shock in the pre-shale period. A 
positive aggregate demand shock increases non-oil and total investment 
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in the pre-shale period, too, but with a delay, and the responses are not 
statistically significant. An oil price increase driven by a negative oil 
supply shock, on the other hand, causes a larger and significant decline 
in non-oil and total investment for about a year in the pre-shale period 
compared with a more muted, insignificant response in the full sample.

In summary, my findings suggest that the U.S. shale boom changed 
the response of U.S. investment to oil price shocks. Oil investment has 
become more responsive to an oil price increase, inducing higher non-
oil investment. These positive spillovers from an oil price increase to 
U.S. aggregate investment are not present in the pre-shale period. 

III. Conclusion 

 Oil prices have more than doubled since their lows in early 2016, 
renewing interest in the effect of increasing oil prices on the U.S. 
economy. A primary channel through which oil price shocks affect the 
economy is investment. After controlling for the source of changes in 
oil prices, I find that oil investment has become more responsive to oil 
supply and demand shocks since the shale boom. Changes in the sen-
sitivity of investment to oil price fluctuations extend beyond the more 
direct effects on oil investment. The response of non-oil investment has 
changed too. Non-oil investment has also become more responsive to 
demand shocks and less responsive to oil supply shocks since the shale 
boom, a pattern which has carried over to aggregate investment. 

Together, these results suggest that the increased U.S. presence in 
the global oil market has led to greater spillovers from the oil sector to 
the aggregate economy. These findings may help explain why U.S. in-
vestment exhibited recessionary-like dynamics following the substantial 
decline in oil prices from June 2014 to March 2016 and then recovered 
as oil prices rose.              
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Appendix

Decomposing Changes in the Real Price of Oil into Oil Supply 
and Demand Shocks

Structural vector autoregressions (SVARs) are commonly used to 
model the global oil market and study the effect of oil price shocks on 
macroeconomic aggregates. The shocks recovered from an SVAR may 
differ depending on the variables included in the model and the iden-
tification scheme. The SVAR specification I use in this article is similar 
to Davig and others (2015), which is based on Kilian (2009). 

I use a three-variable SVAR based on monthly data that include the 
percent change in global oil production, a suitable index for real global 
economic activity, and the real price of oil. The model is identified 
recursively. Oil supply does not respond contemporaneously (within a 
month) to changes in oil demand—that is, the short-run supply curve 
is vertical.8 Additionally, changes in real oil prices driven by oil-specific 
shocks have no contemporaneous effect on global economic activity. 

The SVAR covers the sample periods of January 1986 to December 
2005 and January 1986 to December 2017 with four lags. The choice 
of starting date is motivated by Baumeister and Peersman (2013).9 The 
lag order tends to be larger than estimates suggested by the Akaike 
Information Criterion conditional on an upper bound of 12 lags. Al-
though the qualitative results are not sensitive to the lag order choice, 
I adopt a conservative approach due to the possibility of underfitting a 
VAR model (Hamilton and Herrera 2004). 

Global oil production is obtained from the Energy Information 
Administration (EIA), and an updated time series for Kilian’s (2009) 
index of global economic activity is obtained from his website.10 The 
real price of oil is measured as the refiners’ acquisition cost of imported 
crude oil, provided by the EIA, which is deflated by the U.S. Con-
sumer Price Index (CPI).  Both the real economic activity index and the 
real price of oil are expressed in logs. The model is estimated following 
Kilian (2009). 

Charts A-1 and A-2 show the responses of the real price of oil 
to one standard deviation structural changes in the pre-shale period 
and in the full sample, respectively. Solid blue lines show point esti-
mates with 90 percent confidence intervals. In the pre-shale period,  
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Chart A-1
Oil Price Responses to One-Standard-Deviation Structural Shocks, 
1986–2005
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Chart A-2
Oil Price Responses to One-Standard-Deviation Structural Shocks, 
1986–2017

Notes: Solid lines show point estimates. Gray shaded regions represent 90 percent confidence intervals.
Sources: BLS, EIA, and author’s calculations.
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an unexpected negative oil supply shock causes a transitory increase in 
the price of oil. The effect of an unanticipated positive aggregate de-
mand shock is similar on impact to that of a negative oil supply shock 
but highly persistent. A surprise increase in oil-specific demand has a 
more distinct effect on the price of oil. It causes a sharp, very large, and 
persistent increase in the real oil price, which is also highly statistically 
significant. The oil price responses in the full sample are similar to the 
pre-shale responses except a persistent increase in the real oil price in 
response to a negative supply shock in the full sample. These results are 
overall similar to estimates obtained by Davig and others (2015) using 
data from January 1985 to March 2015. 

A historical decomposition is useful for understanding the contri-
bution of these shocks to oil price movements. Charts A-3 and A-4 
present the respective cumulative contribution of oil supply and de-
mand shocks to the real price of oil over the two sample periods. Over-
all, the charts show that the real oil price is indeed driven by all shocks 
at all times, but their contributions differ. Historically, oil supply 
shocks have made smaller contributions to the real price of oil relative 
to demand shocks. And while aggregate demand shocks have caused 
long swings, oil-specific shocks are associated with fairly sharply de-
fined swings in oil price. Charts A-3 and A-4 also suggest that demand 
shocks have played a larger role in recent episodes of large oil price 
changes, such as the global financial crisis and the 2014–16 oil price de-
clines.11 Oil-specific demand shocks played an especially important role 
in the 2014–16 decline (for more details, see Davig and others [2015]). 
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Chart A-3
Historical Decomposition of the Real Price of Oil, 1986–2005

Chart A-4
Historical Decomposition of the Real Price of Oil, 1986–2017

Sources: BLS, EIA, and author’s calculations.

Sources: BLS, EIA, and author’s calculations.
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Endnotes

1These results rely on the assumption that investment responds symmetrically 
to energy price increases and decreases.

2She then builds a model to explain her empirical findings and shows that the 
oil firm’s ability to cover high fixed costs in the sector, which depends on the size 
of the oil price shock, is important in understanding the responses.    

3The lag structure follows existing research—see, for example, Hamilton (2003), 
Edelstein and Kilian (2007), Kilian (2008), and Baumeister and Kilian (2016b).

4I obtain the level responses for the three investment categories by cumulat-
ing the estimated impulse responses.

5Splitting the sample at 2005 results in too few observations for the empirical 
analysis in the post-2005 period. 

6Oil investment being more responsive to demand shocks than supply shocks 
is consistent with Bornstein, Krusell, and Rebelo’s (2017) finding that investment 
in the oil industry is driven mostly by demand shocks. 

7See, for example, Dale (2016); and Bjørnland, Nordvik, and Rohrer (2017).   
8The very low short-run oil supply elasticity estimate (annual 0.12) reported 

by Bornstein, Krusell, and Rebelo (2017)—along with the finding of Anderson, 
Kellogg, and Salant (2018) that oil production from existing wells in Texas does 
not respond to oil prices—supports this assumption.  

9The authors find a considerable break in oil market dynamics in the first 
quarter of 1986 in a time-varying SVAR framework. Moreover, prior research 
frequently uses this date for splitting samples, which coincides with the collapse 
of the Organization of the Petroleum Exporting Countries (OPEC)’s market share 
and the start of the Great Moderation.  

10The index is the cumulative average of the increase in bulk dry cargo ocean 
freight rates, deflated by the U.S. CPI and linearly detrended. Kilian and Zhou 
(2018) provide detailed information on this index and other indicators of global 
real economic activity.        

11For a more detailed discussion on major oil price events, see Hamilton 
(2011) and Baumeister and Kilian (2016a). 
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Forecasting macroeconomic conditions can be challenging. Accu-
rate forecasts require an approach complex enough to incorporate 
relevant economic data but focused enough to exclude irrelevant 

data. Most forecasters attempt to balance focus and complexity with 
one of two approaches: aggregating forecasts from professional forecast-
ers into a consensus prediction or using statistical modeling techniques 
typically specialized for time-series data. However, both approaches in-
volve discretionary choices about data and methods. Although forecast-
ers underpin the choices they make about models and complexity with 
economic intuition and judgement, these assumptions can be flawed. 

Machine learning approaches, on the other hand, automate as many 
of those choices as possible in a manner that is not subject to the discre-
tion of the forecaster. Indeed, optimizing a model without assumptions 
or judgement is a central issue of study in machine learning. In this 
article, I apply machine learning techniques to find an optimal forecast-
ing model for the unemployment rate. After identifying a model that 
is not subject to discretion or assumptions, I compare the forecasts ob-
tained from the machine learning model to forecasts obtained through 
traditional forecasting approaches. My experiments show that when 
supplied with diverse and complex data, the machine learning model 
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can outperform simpler time-series models as well as a consensus of 
professional forecasters, with better performance at shorter horizons. In 
particular, experiments show that a machine learning model can iden-
tify turning points in the unemployment rate earlier than competing 
methods, suggesting that it can provide forecasters with more guidance 
about cyclical fluctuations than a consensus or autoregressive forecast.

Section I reviews the statistical and consensus approaches for mac-
roeconomic forecasting. Section II discusses how machine learning can 
be used to optimize model complexity. Section III shows that one ma-
chine learning model, the Elastic Net, can outperform traditional mod-
els at all horizons, detect turning points earlier, and identify variables 
that can help predict unemployment from among a broad set. 

I. 	 Popular Approaches to Unemployment Forecasting

The unemployment rate is a challenging variable to forecast because 
it can be influenced by a wide variety of other variables. In the past, 
forecasters have attempted to overcome these challenges through sta-
tistical modeling or consensus forecasting. Statistical modeling benefits 
from strong mathematical theory that can lead to less biased forecasts 
and more consistent predictions. One of the most common statistical 
models for time-series forecasting is an autoregressive (AR) model, which 
assumes future observations are predicted primarily by recent observa-
tions. The unemployment rate is largely consistent with that assumption. 
In addition to AR models, forecasters often use a random walk model 
as a control or baseline. In a random walk, predictions for tomorrow’s 
unemployment rate are based on the unemployment rate today plus an 
additional random shock. If a model cannot perform better than a ran-
dom walk, it is unlikely it will be useful in making predictions. 	

Some forecasters might assume that a wide variety of variables, in 
addition to the past unemployment rate, may be useful in forecast-
ing unemployment and therefore incorporate additional information 
in their forecasting models (Barnichon and Nekarda 2013). Still, they 
may overlook other important information that might influence the 
unemployment rate, including info on housing markets, consumer sen-
timent, and interest rates. 

Consensus forecasting, contrasted with statistical models, lever-
ages the wisdom of the crowd and benefits from combining as many  
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different kinds of models as there are forecasters. These models range 
from sophisticated empirical systems of equations to simple gut instinct. 
Consensus forecasts are available for the unemployment rate from both 
Blue Chip Economic Indicators and the Survey of Professional Fore-
casters (SPF). By drawing from a variety of techniques and methods, 
these consensus forecasts can be more accurate than any particular pro-
fessional forecast (Clemen 1989). 

Both statistical modeling and consensus forecasting require a range 
of different choices that affect model complexity and forecasting per-
formance. The AR model requires some very clear choices—specifically, 
the number of lagged variables to include. This choice can have a signif-
icant effect on AR forecasting performance. Although many researchers 
use some metric such as the Bayesian information criterion to deter-
mine the number of lags, they still must choose a metric and the maxi-
mum number of lags. There are not many models that do not require 
any choices, but the random walk model is one example; the model is 
purely a function of random movements based on past observations of 
the unemployment rate.

On the surface, the consensus forecast may not seem to involve 
many choices, as all the choices are being made by the forecasters them-
selves. This is a desirable quality, which is why the Blue Chip forecasts 
are commonly used as a competitive benchmark. However, researchers 
using these forecasts must still make choices about how to use them. 
Some may decide to use the median forecast instead of the average fore-
cast. Others may choose to average only top-performing forecasters.

Rather than make restrictive modeling assumptions, researchers 
might alternatively consider a model that can admit any number of 
variables. Here, the field of choices begins to explode. For example, the 
FRED economic data platform, housed at the Federal Reserve Bank of 
St. Louis, advertises 527,000 economic series—which of these should 
researchers choose to include? 

Machine learning techniques and models can simplify this set of 
choices tremendously. Models such as Elastic Net allow researchers to 
make a single choice about how to constrain the model’s complexity 
rather than considering the inclusion or exclusion of all potential se-
ries. Moreover, other machine learning techniques can help researchers 
discover the optimal model complexity, eliminating that choice as well. 
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II.	  Introducing Machine Learning and Forecasting

The field of machine learning encompasses a wide variety of mod-
els. One way to identify the optimal forecasting model is to decompose 
the source of forecast errors into two parts—bias and variance. The bias 
of a model describes errors due to inaccurate assumptions about a prob-
lem or data. The variance of a model describes errors due to a model’s 
sensitivity to small perturbations in the underlying data.

Figure 1 shows the effects of bias and variance on model predictions. 
In particular, the figure shows four bullseyes arising from the combina-
tion of two different conditions: high or low bias and high or low vari-
ance. The orange center of the bullseye represents the correct prediction, 
and the blue dots represent model predictions. Bias indicates how close 
to the center of the bullseye a model’s predictions are, while variance in-
dicates how tightly or loosely the predictions are clustered. Models with 
high bias and low variance yield observations that are tightly clustered 
but far from the correct prediction. Models with low bias and high vari-
ance, on the other hand, yield observations that are only loosely clustered 
around the correct prediction. Both of these sources of errors are related 
to the complexity of a model. Understanding the tradeoff between bias 
and variance can help forecasters optimize model complexity and thus 
minimize the total error in their predictions. 

The complexity of a model can be assessed in many different ways, 
which are often dependent on the nature of the model itself. Sources of 
model complexity include the number of variables in a model, the num-
ber of parameters a model “learns,” the number of parameters a user de-
fines, or the number of variable relationships a model captures internally.

The relationship between model complexity, bias, and variance is 
often illustrated as a trade-off. Figure 2 shows that as the complexity 
of a model increases, the model typically exhibits less bias but more 
variance. The dashed line indicates optimum model complexity, where 
the total error due to both bias and variance is minimized and thus the 
corresponding forecast error for new observations (called the generaliza-
tion error) is minimized.

To further illustrate this trade-off, consider a forecaster using a linear 
regression model estimated using ordinary least squares (OLS) to fore-
cast the unemployment rate. In this case, the complexity of the model 
refers to the number of explanatory variables the forecaster chooses to 
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Figure 1
Errors of a Model Due to Bias and Variance
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Note: The orange dot represents the true output a model is trying to capture, while the blue dots represent the learned 
outputs of a model under different conditions.

Figure 2
Trade-Off between Errors Due to Variance and Errors Due to Bias

Note: Minimally complex models typically exhibit low variance but high bias, while maximally complex models 
exhibit the opposite.
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include. If the forecaster uses a simple model with a single variable for 
the previous period’s observed unemployment rate, then the model will 
have large forecast errors from bias due to the likely incorrect assump-
tion that future unemployment is only dependent on current unem-
ployment. However, the model will have small errors due to variance be-
cause the model is robust to small perturbations in the underlying data 
(that is, small changes in the observed variable translate to small changes 
in the forecast, proportional to the estimated model coefficient). 

The forecaster can increase the complexity of their model by add-
ing variables. In doing so, the forecast error from bias will decline be-
cause the assumption that only current unemployment determines fu-
ture unemployment has been relaxed. However, the forecast error from 
variance will increase because small perturbations in lots of variables 
(including those that may be irrelevant to the unemployment rate) will 
now translate to disproportionally large changes in the forecast. 

The Elastic Net model, which has become popular in machine 
learning, can precisely balance errors due to bias and variance through 
regularization. Regularization effectively “disciplines” a model by intro-
ducing penalties for overfitting the data. The Elastic Net model blends 
two different kinds of regularization by penalizing both the number 
of variables in the model and the extent to which any given variable 
contributes to the model’s forecast (the magnitude of the variable’s coef-
ficient). By applying these penalties, Elastic Net learns which variables 
are most important, eliminating the need for researchers to make dis-
cretionary choices about which variables to include (further details on 
how the penalties are assessed are available in the appendix). In this way, 
the model is able to pare complex data down to only what is needed to 
capture the complexity of the problem at hand. 

III. 	Comparing Machine Learning to Consensus  
and Statistical Forecasts

Machine learning provides a strong set of tools for finding the 
optimal complexity of a model, freeing forecasters from the need to 
use strong assumptions or judgement to simplify their models. To as-
sess whether these advantages yield more accurate forecasts, I compare 
the results from one regularized machine learning model, the Elastic 
Net, to typical consensus and statistical forecasts of the U.S. civilian  
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unemployment rate at a monthly frequency. I also assess these methods’ 
utility in identify turning points in the business cycle as seen in the 
unemployment rate. 	

The benchmark models used for comparison are the consensus 
forecast from Blue Chip, an AR model, and a random walk. I use Blue 
Chip forecasts rather than forecasts from the SPF, as the SPF does not 
forecast at a monthly frequency.1 The AR model is an integrated model 
that uses monthly changes in the unemployment rate to forecast the  
future unemployment rate. I choose the lag length using the Bayesian 
information criterion, with a maximum lag length of six months. By 
definition, the random walk and AR models only use past observations 
of the unemployment rate to forecast future outcomes. 

In contrast, the Elastic Net model forecasts the future unemploy-
ment rate using FRED-MD, a diverse variable set of 138 macroeco-
nomic variables drawn from a number of economic categories (Mc-
Cracken and Ng 2015). Adding these variables allows the Elastic Net 
model more potential complexity but allows overfitting as well. The 
combined data set spans March 1959 through April 2017 for a total 
of 698 monthly observations. I use the first half of this sample (March 
1959 through June 1988) to train the initial models and fit the coef-
ficients, and the second half of the sample (July 1988 through April 
2017) for the forecast comparison. I use a rolling forecast framework, 
in which I train a model using data observed up to current period t to 
fit the coefficients, make a forecast for period t + 1, then advance one 
period and repeat until the end of the forecast span. I consider forecast-
ing horizons of up to two years ahead at three-month intervals (three, 
six, nine, 12, and 24 months).

Forecast accuracy

Table 1 shows that Elastic Net yields the most accurate forecasts as 
measured by the mean absolute error (MAE) for all horizons. Elastic 
Net outperforms even Blue Chip forecasting, indicating that the model 
is effectively learning the underlying relationships between economic 
series. Table 2 shows that Elastic Net outperforms Blue Chip by 0.07 
percent on average. The advantage is more pronounced at shorter hori-
zons, and the learned relationships are less useful at horizons above 12 
months. The performance advantage of Elastic Net over Blue Chip is 
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Table 1
MAE Results

Table 2
Differences between MAE for Elastic Net and Other Forecasts

Horizon
(months)

Random walk
(percent)

AR
(percent)

Blue Chip
(percent)

Elastic Net
(percent)

3 0.35 0.23 0.26 0.17

6 0.53 0.38 0.39 0.27

9 0.79 0.58 0.52 0.42

12 1.00 0.82 0.65 0.58

15 1.22 1.04 0.76 0.74

18 1.49 1.30 0.92 0.88

21 1.69 1.55 – 1.02

24 1.91 1.78 – 1.20

Average 1.12 0.96 – 0.66

Horizon 
(months)

Random walk
(percent)

AR
(percent)

Blue Chip
(percent)

3 0.18 0.06 0.09

6 0.26 0.11 0.12

9 0.37 0.16 0.10

12 0.42 0.24 0.07

15 0.48 0.30 0.02

18 0.61 0.42 0.04

21 0.67 0.53 –

24 0.71 0.58 –

Average 0.46 0.30 0.07

Note: Forecasting results shown for all horizons with each of the four methods.
Sources: Blue Chip Economic Indicators, Bureau of Labor Statistics, Federal Reserve Bank of St. Louis FRED,  
and author’s calculations.

Note: Positive values indicate better performance for Elastic Net.
Sources: Blue Chip Economic Indicators, Bureau of Labor Statistics, Federal Reserve Bank of St. Louis FRED, 
and author’s calculations. 
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statistically significant for most forecast horizons, as shown in Table 3. 
The p-values in this table indicate a strong, statistically significant dif-
ference at forecast horizons of 12 months or fewer.2 

Forecast turning points

While comparing the errors of different models provides one way 
to evaluate their predictive performance, the raw errors themselves do 
not tell the entire story. One hallmark of the unemployment rate is its 
cyclical movement: the unemployment rate falls in an expansion and 
rises in a recession. Training a model to capture and forecast this cycli-
cal pattern has advantages beyond statistically lowering errors. Fore-
casting turning points in the unemployment rate may provide useful 
information for policymakers.

I identify turning points in the forecast and actual unemployment 
rate using the following steps: first, I smooth the forecast and actual un-
employment rates using a three-month centered moving window. Sec-
ond, I find the months of highest and lowest unemployment for each 
business cycle (spanning peak to trough). Third, I calculate the differ-
ence in months between the turning point in the actual unemployment 
rate and the turning point in the forecast unemployment rate. 

Table 4 shows that Elastic Net is also able to identify unemploy-
ment rate turning points earlier than Blue Chip and other methods. 
The advantage for Elastic Net is more pronounced at shorter horizons, 

Table 3
P-Values for Statistical Significance

Horizon (months) Random walk AR Blue Chip

3 0.008 0.000 0.000

6 0.006 0.000 0.000

9 0.171 0.000 0.000

12 0.006 0.000 0.001

15 0.000 0.000 0.021

18 0.005 0.000 0.199

21 0.003 0.000 –

24 0.043 0.000 –

Note: Significance computed for MAE with respect to Elastic Net compared with AR, random walk,  
and Blue Chip.
Sources: Blue Chip Economic Indicators, Bureau of Labor Statistics, Federal Reserve Bank of St. Louis FRED, 
and author’s calculations.
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Table 4
Forecast Error in Predicting Turning Points (in Months)

Note: Average distances are calculated from predicted turning points to actual turning points for forecasting 
methods and variable sets for all horizons.
Sources: Blue Chip Economic Indicators, Bureau of Labor Statistics, Federal Reserve Bank of St. Louis FRED, 
and author’s calculations.

Horizon Random walk AR Blue Chip Elastic Net

3 6.2 4.0 4.2 0.6

6 8.4 6.0 7.0 1.4

9 10.8 8.8 9.2 4.0

12 15.8 10.8 11.8 6.4

15 17.8 12.8 14.0 7.0

18 18.6 13.4 12.8 8.8

21 20.8 14.2 – 7.0

24 19.8 13.8 – 10.0

Average 14.7 10.4 – 5.65

Table 5
Difference in Turning Point Distances from Elastic Net  
(in Months)

Note: Positive values indicate better performance for Elastic Net. 
Sources: Blue Chip Economic Indicators, Bureau of Labor Statistics, Federal Reserve Bank of St. Louis Federal 
FRED, and author’s calculations.

Horizon Random walk AR Blue Chip

3 5.6 3.4 3.6

6 7.0 4.6 5.6

9 6.8 4.8 5.2

12 9.4 4.4 5.4

15 10.8 5.8 7.0

18 9.8 4.6 4.0

21 13.8 7.2 –

24 9.8 3.8 –

Average 9.0 4.8 5.1

meaning it identifies upcoming turning points in the near term earlier 
than other methods. On average, Elastic Net identifies turning points 
5.1 months earlier than Blue Chip, as shown in Table 5. The advantage 
in the number of months across horizons appears to be fairly consistent, 
without strong variation between short and long horizons. 
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Chart 1
Unemployment Forecasts at the Three-Month Horizon

Panel A: Elastic Net

Panel B: Blue Chip Consensus

Smoothed unemployment rate (percent) Smoothed unemployment rate (percent)

9

8

7

6

5

4

9

8

7

6

5

4

Actual

Actual peaks
Predicted

Predicted peaks

1992 1996 2000 2004 2008 2012

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Smoothed unemployment rate (percent) Smoothed unemployment rate (percent)

9

8

7

6

5

4

9

8

7

6

5

4

Actual

Actual peaks
Predicted

Predicted peaks

1992 1996 2000 2004 2008 2012

Sources: Blue Chip Economic Indicators, Bureau of Labor Statistics, Federal Reserve Bank of St. Louis FRED, 
and author’s calculations.

The earlier turning points for Elastic Net can be identified visually 
at both short and long horizons, as shown in Charts 1 and 2. Panels A 
and B of Chart 1 shows that at a three-month horizon, the differences 
from the actual unemployment rate are relatively minor—specifically, 
the blue (actual) and orange (predicted) lines often overlap. However, 
the Elastic Net forecast appears to track (overlap) the actual rate track 
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Chart 2
Unemployment Forecasts at the 12-Month Horizon

Panel A: Elastic Net

Panel B: Blue Chip Consensus

Sources: Blue Chip Economic Indicators, Bureau of Labor Statistics, Federal Reserve Bank of St. Louis FRED, 
and author’s calculations. 
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more closely than the Blue Chip forecast. Indeed, the Blue Chip fore-
cast appears to lag the actual rate by a consistent amount, especially 
during downward trends.

Panels A and B of Chart 2 show that at a 12-month horizon, the 
forecasts deviate more from the actual rates, as expected. The blue and 
orange lines in Panels A and B show very little overlap, instead crossing 
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over in the periods between turning points. Again, however, the Blue 
Chip forecast appears to lag the actual rate by a consistent amount 
throughout the range of the forecast. The Elastic Net model, on the 
other hand, appears to respond to turning points earlier to change the 
forecast trend. These charts provide qualitative support for the differ-
ences shown in performance statistics.

Variables identified by Elastic Net

In addition to forecast improvements, Elastic Net can also iden-
tify variables potentially important to predicting the unemployment 
rate. By using regularization to control the size of variable coefficients 
in the model, Elastic Net can drive some coefficients to exactly zero 
and thus select a more parsimonious number of variables than an 
unregularized linear model. Inspecting the model to see how it is 
making forecasts may uncover new relationships in the data that have 
been previously overlooked. 

The variables identified by Elastic Net cover mostly labor market 
and housing, with some additional variables covering consumption, 
output and income, and interest and exchange rates. The coefficients 
for these variables are shown in Tables 6 and 7, for forecast horizons of 
three and 12 months, respectively. At a three- and 12-month horizon, 
variables from housing, manufacturing, and interest rates have the larg-
est coefficients, indicating they have the largest effect on the unemploy-
ment rate forecast. The coefficients listed in these tables are averaged 
over all forecast steps. Only variables with coefficients greater than two 
standard errors from zero are included.

Panels A and B of Figure 4 show that the strength of these coef-
ficients can vary over time for some variables while staying constant for 
others. Examining the coefficients allows us to discover how the learned 
model changes in response to different economic conditions over time.  
For example, Panel A shows that while many of the coefficient series 
are stable at the three-month horizon (shown by the solid white bands), 
the housing and interest rate variables change throughout the forecast 
period (shown by the shifts in color over time). Prior to 1993–94, the 
coefficients on the housing and interest rate variables were near zero or 
only briefly below zero. After 1993–94, however, the coefficients were 
consistently strong (indicated by the more saturated orange bands). 
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Table 7
Coefficients for Elastic Net Model for 12-Month Horizon

Description Coefficient Category

Consumer sentiment index −0.015
(0.006)

Consumption, orders, and 
inventories

Help-wanted index for United States −0.036
(0.016)

Labor market

New private housing permits, Northeast (SAAR) −0.165
(0.082)

Housing

Six-month Treasury minus federal funds −0.205
(0.065)

Interest and exchange rates

Three-month Treasury minus federal funds −0.216
(0.060)

Interest and exchange rates

Average weekly hours: manufacturing −0.237
(0.073)

Labor market

Civilian unemployment rate 0.590
(0.062)

Labor market

Note: Standard errors are in parentheses. 
Sources: Bureau of Labor Statistics, Federal Reserve Bank of St. Louis FRED, and author’s calculations.

Table 6
Coefficients for Elastic Net Model for Three-Month Horizon

Note: Standard errors are in parentheses. 
Sources: Bureau of Labor Statistics, Federal Reserve Bank of St. Louis FRED, and author’s calculations.

Variable Coefficient  Category

Consumer sentiment index −0.005
(0.001)

Consumption, orders, and 
inventories

Help-wanted index for United States −0.025
(0.012)

Labor market

Average duration of unemployment (weeks) 0.032
(0.012)

Labor market

Capacity utilization: manufacturing −0.043
(0.004)

Output and income

Effective federal funds rate −0.100
(0.033)

Interest and exchange rates

New private housing permits, Midwest −0.110
(0.051)

Housing

New private housing permits, Northeast −0.115
(0.044)

Housing

Three-month Treasury minus federal funds −0.148
(0.038)

Interest and exchange rates

Average weekly hours: manufacturing −0.164
(0.020)

Labor market

Civilian unemployment rate 0.874
(0.019)

Labor market
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Figure 4
Coefficients over 1988–2017 for Elastic Net

Sources: Bureau of Labor Statistics, Federal Reserve Bank of St. Louis FRED, and author’s calculations.
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This period of inconsistency broadly centers around the 1990–91 re-
cession, but extends both ahead and behind. The coefficients on these 
variables diminished near the 2001 recession as well. Interestingly, only 
the coefficient on the federal funds rate variable diminished after the 
2007–09 recession, indicating that this variable has diverged from the 
others and may no longer be relevant.

Panel B shows several other interesting patterns in variable coef-
ficients for the 12-month forecast horizons. The conspicuous band of 
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color change on the left side of the heat map shows that coefficients on 
the labor, housing, and interest variables strengthened. This band cor-
responds to the late-1989 to mid-1991 recessionary period of negative 
or slow GDP growth, suggesting the model is picking up disruptions 
in economic relationships associated with the recession. Another pat-
tern of change across variables is seen in the 1996–98 period and again 
in 1999–2000. These years correspond to a relatively stable expansion 
before the 2001 recession, suggesting that the influence of manufactur-
ing, housing, and interest rate variables strengthened after the reces-
sion. In contrast, the coefficients on these variables weakened after the 
2007–09 recession; however, the coefficients on other variables weak-
ened during this period as well, suggesting these changes may be due to 
broader conditions. 

IV. 	 Conclusions

Forecasting is challenging, and the wealth of new and accessible data 
describing economic conditions presents an opportunity to explore more 
complex models that can capture more of the economic data. The field of 
machine learning provides a number of methods to address and capital-
ize on this complexity, both through increasingly complex models as well 
as methods to control and optimize that complexity.

I compare the performance of consensus, statistical, and machine 
learning methods for forecasting the monthly U.S. unemployment 
rate. My analysis shows that a more complex model, when properly 
controlled and provided with enough data from which to learn, can 
significantly outperform consensus and simpler statistical forecast-
ing methods. The key to this result is the control of model complex-
ity through regularization, a machine learning technique that yields 
a model complex enough to avoid underfitting the data but not so 
complex as to overfit it.
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Appendix

Details of the Elastic Net Model

This appendix discusses the technical details of the Elastic Net 
model and how it is estimated. For completeness, I build the Elastic 
Net model piecewise as I add regularization components. The objective 
function for estimating coefficients β ={β1, β2, … , βm} in an ordinary 
least squares (OLS) model is given as:

β OLS =arg min Σi=1
(xi β – yi)

2.

Here, I omit the intercept without loss of generality, and represent the 
set of coefficients β and independent variables x as vectors with the i 
subscript indicating the ith of  n total samples, with yi as the response 
for the ith sample. Next, an L1 regularization term is added, giving the 
LASSO objective:

β LASSO =arg min Σi=1
(xi β –yi)

2 + λ ||β ||1.

Then, an L2 regularization term is added as in a ridge regression, giv-
ing the Elastic Net objective:

β       EN =arg min Σi=1
(xi β –yi)

2 + λ1||β ||1+ λ2|| β ||    .

In this objective, the penalty weights λ1 and λ2 are chosen as posi-
tive but unbounded, so a re-parameterization is often desirable. The 
revised objective is:

β    EN =arg min Σi=1
(xi β –yi)

2 + αρ ||β || 1+                     ||β ||     

which gives two alternative parameters, α and ρ, where ρ is bounded 
between 0 and 1 and controls how the regularization strength is bal-
anced between the L1 and L2 terms. The parameter α controls the over-
all strength of regularization and is positive and unbounded. The final 
objective function is convex and so can be minimized using any convex 
optimization method such as gradient or coordinate descent. 
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Endnotes

1One challenge with using Blue Chip forecasts for comparison is that some 
of the historical data used by models in my forecasts have been revised, while the 
Blue Chip forecasts were made before revised data were available.

2Statistical significance is computed using a two-sample Kolmogorov-
Smirnov test to compute the probability that errors from two models are drawn 
from the same distribution.



ECONOMIC REVIEW • FOURTH QUARTER 2018	 81

References

Barnichon, Regis, and Christopher J. Nekarda. 2012. “The Ins and Outs of 
Forecasting Unemployment: Using Labor Force Flows to Forecast the Labor 
Market.” Board of Governors of the Federal Reserve System, Finance and 
Economics Discussion Series 2013-19, November. 

Clemen, Robert T. 1989 “Combining Forecasts: A Review and Annotated Bib-
liography.” International Journal of Forecasting, vol. 5, no. 54, pp. 559–583. 
Available at https://doi.org/10.1016/0169-2070(89)90012-5 

Cook, Thomas R., and Aaron Smalter Hall 2017. “Macroeconomic Indicator 
Forecasting with Deep Neural Networks.” Federal Reserve Bank of Kansas 
City, Research Working Paper no. 17-11, September. Available at https://doi.
org/10.18651/RWP2017-11 

Diebold, Francis X. 1997. “The Past, Present, and Future of Macroeconomic 
Forecasting.” NBER Working Paper no. 6290, November. Available at 
https://doi.org/10.3386/w6290  

Lucas, Robert E., Jr. 1976. “Econometric Policy Evaluation: A Critique.” Carnegie 
Rochester Conference Series on Public Policy, vol. 1, pp. 19–46. Available at 
https://doi.org/10.1016/S0167-2231(76)80003-6 

McCracken, Michael W., and Serena Ng. 2015. “FRED-MD: Monthly Database 
for Macroeconomic Research.” Federal Reserve Bank of St. Louis, working 
paper, August. Available at https://doi.org/10.1080/07350015.2015.1086655 

Pescatori, Andrea, and Saeed Zaman. 2011. “Macroeconomic Models, Forecast-
ing, and Policymaking.” Federal Reserve Bank of Cleveland, Economic Com-
mentary, vol. 19, October. 

Sims, Christopher A. 1980. “Macroeconomics and Reality.” Econometrica, vol. 
48, no. 1, pp. 1–48. Available at https://doi.org/10.2307/1912017 

Ye, Jianming. 1998. “On Measuring and Correcting the Effects of Data Mining 
and Model Selection.” Journal of the American Statistical Association, vol. 93, 
no. 441, pp. 120–131. Available at https://doi.org/10.2307/2669609

Zou, Hui, and Trevor Hastie. 2005. “Regularization and Variable Selection via the 
Elastic Net.” Journal of the Royal Statistical Society: Series B (Statistical Meth-
odology), vol. 67, no. 2, pp. 301–320. Available at https://doi.org/10.1111/
j.1467-9868.2005.00503.x

https://doi.org/10.1016/0169-2070(89)90012-5
https://doi.org/10.18651/RWP2017-11
https://doi.org/10.18651/RWP2017-11
https://doi.org/10.3386/w6290
https://doi.org/10.1016/S0167-2231(76)80003-6
https://doi.org/10.1080/07350015.2015.1086655
https://doi.org/10.2307/1912017
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x




Economic Review
PRESIDENT AND CHIEF EXECUTIVE OFFICER

Esther L. George

RESEARCH STEERING GROUP
Kelly J. Dubbert, First Vice President and Chief Operating Officer
Kevin L. Moore, Senior Vice President
Diane M. Raley, Senior Vice President
Luke Woodward, Senior Vice President

EDITOR-IN-CHIEF
George A. Kahn, Vice President and Economist

MANAGING EDITOR
Elizabeth Cook Willoughby, Communications Consultant

RESEARCH STAFF
Jonathan L. Willis, Vice President and Senior Research and Policy Advisor 
Alison Felix, Vice President and Branch Executive, Denver Branch 
Nathan Kauffman, Vice President and Branch Executive, Omaha Branch 
Chad Wilkerson, Vice President and Branch Executive, Oklahoma City Branch 
Jason P. Brown, Assistant Vice President and Economist
Nicholas Sly, Assistant Vice President and Economist
Willem Van Zandweghe, Assistant Vice President and Economist
Jim Wilkinson, Assistant Vice President and Economist
Huixin Bi, Senior Economist
Brent Bundick, Senior Economist
Taeyoung Doh, Senior Economist
Kelly D. Edmiston, Senior Economist
Fumiko Hayashi, Senior Economist
José Mustre-del-Río, Senior Economist
Jun Nie, Senior Economist
Jordan Rappaport, Senior Economist
A. Lee Smith, Senior Economist
Didem Tüzemen, Senior Economist
Nida Çakır Melek, Economist
Cortney Cowley, Economist
W. Blake Marsh, Economist
Rajdeep Sengupta, Economist
Aaron Smalter Hall, Senior Data Scientist
David Rodziewicz, Commodity Specialist
Jesse Maniff, Senior Analyst

EDITORIAL SUPPORT
Richard A. Babson, Senior Editor
Beth Norman, Layout Designer



Fourth Quarter 2018, Volume 103, Number 4

The Economic Review (ISSN0161-2387) is published quarterly by the Federal Reserve Bank 
of Kansas City, 1 Memorial Drive, Kansas City, Missouri 64198-0001. Subscriptions and ad-
ditional copies are available without charge. Send requests to the Public Affairs Department, 
Federal Reserve Bank of Kansas City, 1 Memorial Drive, Kansas City, Missouri 64198-0001. 
Periodical postage paid at Kansas City, Missouri.
POSTMASTER: Send address changes to Economic Review, Public Affairs Department, 
Federal Reserve Bank of Kansas City, 1 Memorial Drive, Kansas City, Missouri 64198-0001.
The views expressed are those of the authors and do not necessarily reflect the positions of 
the Federal Reserve Bank of Kansas City or the Federal Reserve System. If any material is 
reproduced from this publication, please credit the source.



ECONOMIC REVIEW
Federal Reserve Bank of Kansas City
1 Memorial Drive
Kansas City, Missouri 64198-0001
Fourth Quarter 2018, Vol. 103, No. 4 FEDERAL RESERVE BANK OF KANSAS CITY

ECONOMIC
REVIEW

Fourth Quarter 2018          	                    Volume 103, Number 4

The Faster Growth of Larger, Less Crowded Locations
	
The Response of U.S. Investment to Oil Price Shocks: 
Does the Shale Boom Matter?  

000Machine Learning Approaches  
to Macroeconomic Forecasting                                      	  

   

		


E
C

O
N

O
M

IC
 R

E
V

IE
W

			



FE

D
E

R
A

L R
E

SE
R

V
E

 B
A

N
K

 O
F K

A
N

SA
S C

IT
Y

		
                    	

    FO
U

R
T

H
 Q

U
A

R
T

E
R

 2018




