f-llvmsmé @
DE PAU ET DES
FAYS DE LADOUR

Git branching

Matthieu Haefele

Pau, January 2025

HPCSSS Gitflow

3 > 4 > 8 » 11 | user2_another-feature
2 !
5 ——>[§ | user_feature
\\\TX:ES »<E§> ><:i>~integration
\\x
2 > release

release-v1.0| |[release-vl1.1 release-v2.0

time

-

HPCSSS Gitflow

HPCSSS: High Performance Computing for Scientific Simulation
Software

e Circle, square, diamond: commits
e Numbers: commits' ordering in time

e Arrow: starting point is the parent, arrival is the child

e Textin bold: branches with commits that were made in this branch in
the same horizontal line

e Rectangles at the bottom: tags

Merge or Rebase, that is the question

Merge: the historian view

e The commit history of the project should not be changed

e Repository should contain what actually happened
Rebase: the project maintainer view

e The commit history is the story of how the project was made
e You would not publish the first draft of a book
e Telling a nice story is easier to read for future collaborators

e ! intermediate commits might not work anymore...

What about binary files ?

e git not really helpful with binary files
e but git can store them for small ones

e git annex should be prefered for large files (or git 1fs at least)

References

e https://git-scn.com/book/fr/v2
e http://git-scm.com/doc

e http://nvie.com/posts/a-successful-git-branching-model/

https://git-scm.com/book/fr/v2
http://git-scm.com/doc
http://nvie.com/posts/a-successful-git-branching-model/

Hands-on: Shopping list

e Follow the next section "git in real life" of the hands-on

e Fork the repository on gitlab (one per group) and clone it on your laptop
and follow instructions.

https://git.univ-pau.fr/mhaefele/shopping-list

Commands overview

~ . Lapop
add

restore
reset

—
o
(0]e}

[

- -
- |

\

commit

Paris Repository

=
O—0O—0

Pau Repository
7 © -
©®©—0

-
-

O—O—0
o

My god, a conflict!

1. Etienne and Markus clone their repository

2. Etienne modifies the value of Pi line 33
Pi=3.1 = Pi=3.14

3. Etienne commits
4. Etienne pushes

5. Markus modifies the value of Pi line 33
Pi=3.1 = Pi=3.1415

6. Markus commits
7. Markus pushes =
8. Markus pulls =

Now in Markus' file

<<<<<<< HEAD
Pi = 3.1415;

Pi = 3.14;
>>>>>>> f6f2a6c975df9a06f353e6640997ca39c6d071e3
e Between the << < and the === Markus’s local version
e Between the === and the >>> Etienne’s remote version

e Etienne and Markus have to agree on the value of Pi

How to fix a conflict

Replace everything between the <<< and the >>> by the correct version
Etienne and Markus agreed on adding yet another digit

Check that your program works

git add file

git commit

Automatic commit message indicating conflict resolution

Pi=3.14159;

10

Undoing with git

11

Un-stage staged files: git restore --staged

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

Changes to be committed:
modified: list.txt

$ git restore --staged list.txt

NB: git restore --staged list.txt <=> git reset HEAD list.txt

12

Get back to last repo version: git restore

$ git status
On branch master

Your branch is up-to-date with 'origin/master’'.

Changes not staged for commit:
modified: list.txt

$ git restore list.txt

I modifications are not recoverable
I files should not be staged

13

Get back to a given repo version: git checkout

$ git status
On branch master
Your branch is up-to-date with 'origin/master’'.

Changes not staged for commit:
modified: list.txt

$ git checkout eb2b909 -- list.txt # bring list.txt at version eb2b909
$ git checkout supermarket -- list.txt # bring list.txt at version pointed by branch supermarket

NB: git restore list.txt <=> git checkout HEAD -- list.txt

<=> git checkout -- list.txt

. modifications are not recoverable (if any)
I files should not be staged

14

Reset the whole working dir to a given repo
version: git reset --hard

$ git status
On branch master

Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:

modified: list.txt

modified: README . md

$ git reset --hard eb2b909

git reset --hard moves master to eb2b909 and updates the working dir
=> Discards all modifications

. modifications are not recoverable (if any)

15

Reset whole working dir: git reset --hard

$ git status
On branch master

Your branch is up-to-date with 'origin/master’'.

Changes not staged for commit:
modified: list. txt
modified: README . md

$ git reset --hard HEAD

git reset --hard moves the branch to the given commit and updates the
working directory

=> As HEAD is pointing at master, master does not move.

=> Working dir reset to the master revision

=> Discards all modifications

. modifications are not recoverable (if any)

16

Undo one or several commits: git revert

git
git
git
git
git

revert
revert
revert
revert

revert

HEAD => Undo last commit

HEADA => Undo second to last commit

HEAD~3 => Undo fourth to last commit

9e7185e => Undo a specific commit

HEADA3. .HEAD => Undo a specific range of commits

New commits are created to undo older commits

17

